393 research outputs found

    Actinopolyspora algeriensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil

    Get PDF
    A halophilic actinomycete strain designated H19T, was isolated from a Saharan soil in the Bamendil region (Ouargla province, South Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the strain were consistent with those of members of the genus Actinopolyspora, and 16S rRNA gene sequence analysis confirmed that strain H19T was a novel species of the genus Actinopolyspora. DNA–DNA hybridization value between strain H19T and the nearest Actinopolyspora species, A. halophila, was clearly below the 70 % threshold. The genotypic and phenotypic data showed that the organism represents a novel species of the genus Actinopolyspora for which the name Actinopolyspora algeriensis sp. nov. is proposed, with the type strain H19T (= DSM 45476T = CCUG 62415T)

    Primary Central Nervous System Burkitt Lymphoma With Non-Immunoglobulin Heavy Chain Translocation in Right Ventricle: Case Report

    Get PDF
    Primary central nervous system Burkitt lymphoma (PCNSBL) is rare. Few cases of primary central nervous system involvement with sporadic Burkitt lymphoma have been reported and its treatment is now controversial. Here, the authors report a case of a 14-year-old boy suffering from non-immunoglobulin heavy chain (IgH) translocation PCNSBL. To the authors' knowledge, this is the second case report describing primary Burkitt lymphoma involving cerebral ventricles. After receiving combination treatment with surgery, stereotacticradiosurgery, and a chemotherapy regimen including high-dose methotrexate, the patient had a disease-free survival of 18 months

    Translation initiation and its deregulation during tumorigenesis

    Get PDF
    Regulation of protein synthesis at the level of translation initiation is fundamentally important for the control of cell proliferation under normal physiological conditions. Conversely, misregulation of protein synthesis is emerging as a major contributory factor in cancer development. Most bulk protein synthesis is initiated via recognition of the mRNA 5′ cap and subsequent recognition of the initiator AUG codon by a directional scanning mechanism. However, several key regulators of tumour development are translated by a cap-independent pathway. Here we review eukaryotic translation initiation, its regulation and the ways in which this regulation can break down during tumorigenesis

    Optimization of the doxycycline-dependent simian immunodeficiency virus through in vitro evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaccination of macaques with live attenuated simian immunodeficiency virus (SIV) provides significant protection against the wild-type virus. The use of a live attenuated human immunodeficiency virus (HIV) as AIDS vaccine in humans is however considered unsafe because of the risk that the attenuated virus may accumulate genetic changes during persistence and evolve to a pathogenic variant. We earlier presented a conditionally live HIV-1 variant that replicates exclusively in the presence of doxycycline (dox). Replication of this vaccine strain can be limited to the time that is needed to provide full protection through transient dox administration. Since the effectiveness and safety of such a conditionally live virus vaccine should be tested in macaques, we constructed a similar dox-dependent SIV variant. The Tat-TAR transcription control mechanism in this virus was inactivated through mutation and functionally replaced by the dox-inducible Tet-On regulatory system. This SIV-rtTA variant replicated in a dox-dependent manner in T cell lines, but not as efficiently as the parental SIVmac239 strain. Since macaque studies will likely require an efficiently replicating variant, we set out to optimize SIV-rtTA through in vitro viral evolution.</p> <p>Results</p> <p>Upon long-term culturing of SIV-rtTA, additional nucleotide substitutions were observed in TAR that affect the structure of this RNA element but that do not restore Tat binding. We demonstrate that the bulge and loop mutations that we had introduced in the TAR element of SIV-rtTA to inactivate the Tat-TAR mechanism, shifted the equilibrium between two alternative conformations of TAR. The additional TAR mutations observed in the evolved variants partially or completely restored this equilibrium, which suggests that the balance between the two TAR conformations is important for efficient viral replication. Moreover, SIV-rtTA acquired mutations in the U3 promoter region. We demonstrate that these TAR and U3 changes improve viral replication in T-cell lines and macaque peripheral blood mononuclear cells (PBMC) but do not affect dox-control.</p> <p>Conclusion</p> <p>The dox-dependent SIV-rtTA variant was optimized by viral evolution, yielding variants that can be used to test the conditionally live virus vaccine approach and as a tool in SIV biology studies and vaccine research.</p

    Role of MeCP2, DNA methylation, and HDACs in regulating synapse function

    Get PDF
    Over the past several years there has been intense effort to delineate the role of epigenetic factors, including methyl-CpG-binding protein 2, histone deacetylases, and DNA methyltransferases, in synaptic function. Studies from our group as well as others have shown that these key epigenetic mechanisms are critical regulators of synapse formation, maturation, as well as function. Although most studies have identified selective deficits in excitatory neurotransmission, the latest work has also uncovered deficits in inhibitory neurotransmission as well. Despite the rapid pace of advances, the exact synaptic mechanisms and gene targets that mediate these effects on neurotransmission remain unclear. Nevertheless, these findings not only open new avenues for understanding neuronal circuit abnormalities associated with neurodevelopmental disorders but also elucidate potential targets for addressing the pathophysiology of several intractable neuropsychiatric disorders

    The 5-Choice Continuous Performance Test: Evidence for a Translational Test of Vigilance for Mice

    Get PDF
    Attentional dysfunction is related to functional disability in patients with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and Alzheimer's disease. Indeed, sustained attention/vigilance is among the leading targets for new medications designed to improve cognition in schizophrenia. Although vigilance is assessed frequently using the continuous performance test (CPT) in humans, few tests specifically assess vigilance in rodents.We describe the 5-choice CPT (5C-CPT), an elaboration of the 5-choice serial reaction (5CSR) task that includes non-signal trials, thus mimicking task parameters of human CPTs that use signal and non-signal events to assess vigilance. The performances of C57BL/6J and DBA/2J mice were assessed in the 5C-CPT to determine whether this task could differentiate between strains. C57BL/6J mice were also trained in the 5CSR task and a simple reaction-time (RT) task involving only one choice (1CRT task). We hypothesized that: 1) C57BL/6J performance would be superior to DBA/2J mice in the 5C-CPT as measured by the sensitivity index measure from signal detection theory; 2) a vigilance decrement would be observed in both strains; and 3) RTs would increase across tasks with increased attentional load (1CRT task<5CSR task<5C-CPT).C57BL/6J mice exhibited superior SI levels compared to DBA/2J mice, but with no difference in accuracy. A vigilance decrement was observed in both strains, which was more pronounced in DBA/2J mice and unaffected by response bias. Finally, we observed increased RTs with increased attentional load, such that 1CRT task<5CSR task<5C-CPT, consistent with human performance in simple RT, choice RT, and CPT tasks. Thus we have demonstrated construct validity for the 5C-CPT as a measure of vigilance that is analogous to human CPT studies

    Absence of Both IL-7 and IL-15 Severely Impairs the Development of CD8+ T Cell Response against Toxoplasma gondii

    Get PDF
    CD8+ T cells play an essential role in the protection against both acute as well as chronic Toxoplasma gondii infection. Although the role of IL-15 has been reported to be important for the development of long-term CD8+ T cell immunity against the pathogen, the simultaneous roles played by both IL-15 and related γ-chain family cytokine IL-7 in the generation of this response during acute phase of infection has not been described. We demonstrate that while lack of IL-7 or IL-15 alone has minimal impact on splenic CD8+ T cell maturation or effector function development during acute Toxoplasmosis, absence of both IL-7 and IL-15 only in the context of infection severely down-regulates the development of a potent CD8+ T cell response. This impairment is characterized by reduction in CD44 expression, IFN-γ production, proliferation and cytotoxicity. However, attenuated maturation and decreased effector functions in these mice are essentially downstream consequences of reduced number of antigen-specific CD8+ T cells. Interestingly, the absence of both cytokines did not impair initial CD8+ T cell generation but affected their survival and differentiation into memory phenotype IL-7Rαhi cells. Significantly lack of both cytokines severely affected expression of Bcl-2, an anti-apoptotic protein, but minimally affected proliferation. The overarching role played by these cytokines in eliciting a potent CD8+ T cell immunity against T. gondii infection is further evidenced by poor survival and high parasite burden in anti IL-7 treated IL-15−/− mice. These studies demonstrate that the two cytokines, IL-7 and IL-15, are exclusively important for the development of protective CD8+ T cell immune response against T. gondii. To the best of our knowledge this synergism between IL-7 and IL-15 in generating an optimal CD8+ T cell immunity against intracellular parasite or any other infectious disease model has not been previously reported

    Degradation of aflatoxin B1 from naturally contaminated maize using the edible fungus Pleurotus ostreatus

    Get PDF
    Aflatoxins are highly carcinogenic secondary metabolites that can contaminate approximately 25% of crops and that cause or exacerbate multiple adverse health conditions, especially in Sub-Saharan Africa and South and Southeast Asia. Regulation and decontamination of aflatoxins in high exposure areas is lacking. Biological detoxification methods are promising because they are assumed to be cheaper and more environmentally friendly compared to chemical alternatives. White-rot fungi produce non-specific enzymes that are known to degrade aflatoxin in in situ and ex situ experiments. The aims of this study were to (1) decontaminate aflatoxin-B-1-(AFB(1)) in naturally contaminated maize with the edible, white-rot fungus Pleurotus ostreatus (oyster mushroom) using a solid-state fermentation system that followed standard cultivation techniques, and to (2) and to assess the risk of mutagenicity in the resulting breakdown products and mushrooms. Vegetative growth and yield characteristics of P. ostreatus were not inhibited by the presence of-AFB(1).-AFB(1) was degraded by up to 94% by the Blue strain. No aflatoxin could be detected in P. ostreatus mushrooms produced from-AFB(1)-contaminated maize. Moreover, the mutagenicity of breakdown products from the maize substrate, and reversion of breakdown products to the parent compound, were minimal. These results suggest that P. ostreatus significantly degrades-AFB(1) in naturally contaminated maize under standard cultivation techniques to levels that are acceptable for some livestock fodder, and that using P. ostreatus to bioconvert crops into mushrooms can reduce-AFB(1)-related losses.University of Arizona Green Fund [GF 15.31]Open Access Journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore