30 research outputs found

    Context-dependent preferences in starlings: linking ecology, foraging and choice

    Get PDF
    Foraging animals typically encounter opportunities that they either pursue or skip, but occasionally meet several alternatives simultaneously. Behavioural ecologists predict preferences using absolute properties of each option, while decision theorists focus on relative evaluations at the time of choice. We use European starlings (Sturnus vulgaris) to integrate ecological reasoning with decision models, linking and testing hypotheses for value acquisition and choice mechanism. We hypothesise that options' values depend jointly on absolute attributes, learning context, and subject's state. In simultaneous choices, preference could result either from comparing subjective values using deliberation time, or from processing each alternative independently, without relative comparisons. The combination of the value acquisition hypothesis and independent processing at choice time has been called the Sequential Choice Model. We test this model with options equated in absolute properties to exclude the possibility of preference being built at the time of choice. Starlings learned to obtain food by responding to four stimuli in two contexts. In context [AB], they encountered options A5 or B10 in random alternation; in context [CD], they met C10 or D20. Delay to food is denoted, in seconds, by the suffixes. Observed latency to respond (Li) to each option alone (our measure of value) ranked thus: LA≈LC<LB<<LD, consistently with value being sensitive to both delay and learning context. We then introduced simultaneous presentations of A5 vs. C10 and B10 vs. C10, using latencies in no-choice tests to predict sign and strength of preference in pairings. Starlings preferred A5 over C10 and C10 over B10. There was no detectable evaluation time, and preference magnitude was predictable from latency differentials. This implies that value reflects learning rather than choice context, that preferences are not constructed by relative judgements at the time of choice, and that mechanisms adapted for sequential decisions are effective to predict choice behaviour.This work was supported by Biotechnology and Biological Sciences Research Council (BBSRC) Grant BB/G007144/1 to AK www.bbsrc.ac.uk; TM was supported by a Doctoral Grant from the Portuguese Foundation for Science and Technology (FCT) www.fct.pt/index.phtml.en. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Conjunctive Processing of Locomotor Signals by the Ventral Tegmental Area Neuronal Population

    Get PDF
    The ventral tegmental area (VTA) plays an essential role in reward and motivation. How the dopamine (DA) and non-DA neurons in the VTA engage in motivation-based locomotor behaviors is not well understood. We recorded activity of putative DA and non-DA neurons simultaneously in the VTA of awake mice engaged in motivated voluntary movements such as wheel running. Our results revealed that VTA non-DA neurons exhibited significant rhythmic activity that was correlated with the animal's running rhythms. Activity of putative DA neurons also correlated with the movement behavior, but to a lesser degree. More importantly, putative DA neurons exhibited significant burst activation at both onset and offset of voluntary movements. These findings suggest that VTA DA and non-DA neurons conjunctively process locomotor-related motivational signals that are associated with movement initiation, maintenance and termination

    Role of ER Stress in Ventricular Contractile Dysfunction in Type 2 Diabetes

    Get PDF
    BACKGROUND: Diabetes mellitus (DM) is associated with an increased risk of ischemic heart disease and of adverse outcomes following myocardial infarction (MI). Here we assessed the role of endoplasmic reticulum (ER) stress in ventricular dysfunction and outcomes after MI in type 2 DM (T2DM). METHODOLOGY AND PRINCIPAL FINDINGS: In hearts of OLETF, a rat model of T2DM, at 25∼30 weeks of age, GRP78 and GRP94, markers of ER stress, were increased and sarcoplasmic reticulum calcium ATPase (SERCA)2a protein was reduced by 35% compared with those in LETO, a non-diabetic control. SERCA2a mRNA levels were similar, but SERCA2a protein was more ubiquitinated in OLETF than in LETO. Left ventricular (LV) end-diastolic elastance (Eed) was higher in OLETF than in LETO (53.9±5.2 vs. 20.2±5.6 mmHg/µl), whereas LV end-systolic elastance and positive inotropic responses to β-adrenergic stimulation were similar in OLETF and LETO. 4-Phenylbutyric acid (4-PBA), an ER stress modulator, suppressed both GRP up-regulation and SERCA2a ubiquitination and normalized SERCA2a protein level and Eed in OLETF. Sodium tauroursodeoxycholic acid, a structurally different ER stress modulator, also restored SERCA2a protein level in OLETF. Though LV dysfunction was modest, mortality within 48 h after coronary occlusion was markedly higher in OLETF than in LETO (61.3% vs. 7.7%). Telemetric recording showed that rapid progression of heart failure was responsible for the high mortality rate in OLETF. ER stress modulators failed to reduce the mortality rate after MI in OLETF. CONCLUSIONS: ER stress reduces SERCA2a protein via its augmented ubiquitination and degradation, leading to LV diastolic dysfunction in T2DM. Even at a stage without systolic LV dysfunction, susceptibility to lethal heart failure after infarction is markedly increased, which cannot be explained by ER stress or change in myocardial response to sympathetic nerve activation
    corecore