6 research outputs found
Assessment of PM-EDM cycle factors influence on machining responses and surface properties of biomaterials: A comprehensive review
Powder mixed-electro discharge machining (PM-EDM) is recently evolving machining technique which can simultaneously remove and modify the machined surface through thermo-electrical process. It is a modified form of EDM in which the conductive powder elements are added in the dielectric liquid to enhance machined surface characteristics and machining responses. The commonly used biomaterials such as 316L stainless steel, Ti-based alloy, Ni–Ti, Mg alloy, and Co–Mo–Cr alloy have excellent mechanical characteristics while the biofunction of these materials are not in satisfactory level. Due to higher hardness, brittleness, and heat resistant natures of the biomaterials, it is very challenging to machine them with conventional machining. Both the system efficiency and modified surface properties depend on the associated electrical and non-electrical factors of PM-EDM cycle. This review focuses on the influence of process factors such as current, pulse duration, tool-polarity, duty cycle, potential voltage, types of liquid, and added powder concentration on performance outputs including material removal and tool wear rate, coating thickness, coarseness, microhardness, coating adhesion bonding, biocompatibility, and resistant to corrosion. This study also discusses influence of various powders on machining and modified surface characteristics of biomaterials. The future research scopes and challenges of PM-EDM process are included in this study thoroughly
High speed electrospindle running on air bearings: design and experimental verification
In high-speed machining there are a number of applications in which the spindle is supported by air bearings. This type of bearings has very low friction and wear, resulting in virtually unlimited life. If the system is designed correctly the radial stiffness on the tool is comparable to that of ceramic ball bearings. A mathematical model of rotor-air bearing system and experimental work on high-speed spindle for machining applications are presented. The model is numerically solved paying special attention to boundary condition of supply ports. The discharge coefficient cd is considered on the basis of experimental findings. The influence of clearance and supply port diameter is discussed for radial bearings and axial thrust bearings. The aim is to find an optimum solution representing the compromise between high stiffness, supply flow and stability. The prototype of a high-speed electrospindle running on air bearings is described. The rotor, 50 mm in dia. and weighing 7 kg, is designed for 100 krpm. The spindle is driven by a high frequency asynchronous motor featuring closed loop speed control. Experimental stiffness curves are shown at different supply pressure rating