10 research outputs found

    An evaluation of dried blood spots and oral swabs as alternative specimens for the diagnosis of dengue and screening for past dengue virus exposure.

    No full text
    Non-invasive specimens for dengue diagnosis may be preferable where venous blood is difficult to collect and/or process, such as community-based or remote settings or when sampling from young children. We evaluated the performance of oral swabs and dried blood spots (DBS), compared with plasma, in diagnosing acute dengue and screening for past dengue virus (DENV) exposure. DENV-specific immunoglobulin (Ig) M, IgG, and NS1 antigen were detected both in oral swabs and DBS from acute patients. Oral swabs were less sensitive (IgM: 68.7%, IgG: 91.9%, NS1: 64.7%), but retained good specificity (100%, 92.3%, 95.8%, respectively) compared with plasma. DBS displayed high sensitivity (IgM: 100%, IgG: 96%, NS1: 100%) and specificity (IgM: 75%, IgG: 93%). DENV RNA was amplified from DBS (sensitivity 95.6%) but not from oral swabs. DENV-IgG (indicative of past flavivirus exposure) were detected with moderate sensitivity (61.1%) but poor specificity (50%) in oral swabs from healthy volunteers. Dried blood spots allow sensitive and specific diagnosis of acute dengue by serological, molecular, and antigen detection methods. Oral swabs may be an adequate alternative where blood cannot be collected

    Methods to discriminate primary from secondary dengue during acute symptomatic infection

    No full text
    Background: Dengue virus infection results in a broad spectrum of clinical outcomes, ranging from asymptomatic infection through to severe dengue. Although prior infection with another viral serotype, i.e. secondary dengue, is known to be an important factor influencing disease severity, current methods to determine primary versus secondary immune status during the acute illness do not consider the rapidly evolving immune response, and their accuracy has rarely been evaluated against an independent gold standard. Methods: Two hundred and ninety-three confirmed dengue patients were classified as experiencing primary, secondary or indeterminate infections using plaque reduction neutralisation tests performed 6 months after resolution of the acute illness. We developed and validated regression models to differentiate primary from secondary dengue on multiple acute illness days, using Panbio Indirect IgG and in-house capture IgG and IgM ELISA measurements performed on over 1000 serial samples obtained during acute illness. Results: Cut-offs derived for the various parameters demonstrated progressive change (positively or negatively) by day of illness. Using these time varying cut-offs it was possible to determine whether an infection was primary or secondary on single specimens, with acceptable performance. The model using Panbio Indirect IgG responses and including an interaction with illness day showed the best performance throughout, although with some decline in performance later in infection. Models based on in-house capture IgG levels, and the IgM/IgG ratio, also performed well, though conversely performance improved later in infection. Conclusions: For all assays, the best fitting models estimated a different cut-off value for different days of illness, confirming how rapidly the immune response changes during acute dengue. The optimal choice of assay will vary depending on circumstance. Although the Panbio Indirect IgG model performs best early on, the IgM/IgG capture ratio may be preferred later in the illness course

    Methods to discriminate primary from secondary dengue during acute symptomatic infection

    No full text
    Background: Dengue virus infection results in a broad spectrum of clinical outcomes, ranging from asymptomatic infection through to severe dengue. Although prior infection with another viral serotype, i.e. secondary dengue, is known to be an important factor influencing disease severity, current methods to determine primary versus secondary immune status during the acute illness do not consider the rapidly evolving immune response, and their accuracy has rarely been evaluated against an independent gold standard. Methods: Two hundred and ninety-three confirmed dengue patients were classified as experiencing primary, secondary or indeterminate infections using plaque reduction neutralisation tests performed 6 months after resolution of the acute illness. We developed and validated regression models to differentiate primary from secondary dengue on multiple acute illness days, using Panbio Indirect IgG and in-house capture IgG and IgM ELISA measurements performed on over 1000 serial samples obtained during acute illness. Results: Cut-offs derived for the various parameters demonstrated progressive change (positively or negatively) by day of illness. Using these time varying cut-offs it was possible to determine whether an infection was primary or secondary on single specimens, with acceptable performance. The model using Panbio Indirect IgG responses and including an interaction with illness day showed the best performance throughout, although with some decline in performance later in infection. Models based on in-house capture IgG levels, and the IgM/IgG ratio, also performed well, though conversely performance improved later in infection. Conclusions: For all assays, the best fitting models estimated a different cut-off value for different days of illness, confirming how rapidly the immune response changes during acute dengue. The optimal choice of assay will vary depending on circumstance. Although the Panbio Indirect IgG model performs best early on, the IgM/IgG capture ratio may be preferred later in the illness course.</p

    Endothelial Nitric Oxide Pathways in the Pathophysiology of Dengue: A Prospective Observational Study

    No full text
    Background: Dengue can cause increased vascular permeability that may lead to hypovolemic shock. Endothelial dysfunction may underlie this; however, the association of endothelial nitric oxide (NO) pathways with disease severity is unknown. Methods: We performed a prospective observational study in 2 Vietnamese hospitals, assessing patients presenting early (<72 hours of fever) and patients hospitalized with warning signs or severe dengue. The reactive hyperemic index (RHI), which measures endothelium-dependent vasodilation and is a surrogate marker of endothelial function and NO bioavailability, was evaluated using peripheral artery tonometry (EndoPAT), and plasma levels of l-arginine, arginase-1, and asymmetric dimethylarginine were measured at serial time-points. The main outcome of interest was plasma leakage severity. Results: Three hundred fourteen patients were enrolled; median age of the participants was 21(interquartile range, 13-30) years. No difference was found in the endothelial parameters between dengue and other febrile illness. Considering dengue patients, the RHI was significantly lower for patients with severe plasma leakage compared to those with no leakage (1.46 vs 2.00; P < .001), over acute time-points, apparent already in the early febrile phase (1.29 vs 1.75; P = .012). RHI correlated negatively with arginase-1 and positively with l-arginine (P = .001). Conclusions: Endothelial dysfunction/NO bioavailability is associated with worse plasma leakage, occurs early in dengue illness and correlates with hypoargininemia and high arginase-1 levels

    Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors

    No full text
    corecore