36 research outputs found

    Activities of mixed NOP and mu-opioid receptor ligands

    No full text
    Background and purpose:Compounds that activate both NOP and mu-opioid receptors might be useful as analgesics and drug abuse medications. Studies were carried out to better understand the biological activity of such compounds.Experimental approach:Binding affinities were determined on membranes from cells transfected with NOP and opioid receptors. Functional activity was determined by [(35)S]GTPgammaS binding on cell membranes and using the mouse vas deferens preparation in vitro and the tail flick antinociception assay in vivo.Key results:Compounds ranged in affinity from SR14150, 20-fold selective for NOP receptors, to buprenorphine, 50-fold selective for mu-opioid receptors. In the [(35)S]GTPgammaS assay, SR compounds ranged from full agonist to antagonist at NOP receptors and most were partial agonists at mu-opioid receptors. Buprenorphine was a low efficacy partial agonist at mu-opioid receptors, but did not stimulate [(35)S]GTPgammaS binding through NOP. In the mouse vas deferens, each compound, except for SR16430, inhibited electrically induced contractions. In each case, except for N/OFQ itself, the inhibition was due to mu-opioid receptor activation, as determined by equivalent results in NOP receptor knockout tissues. SR14150 showed antinociceptive activity in the tail flick test, which was reversed by the opioid antagonist naloxone.Conclusions and implications:Compounds that bind to both mu-opioid and NOP receptors have antinociceptive activity but the relative contribution of each receptor is unclear. These experiments help characterize compounds that bind to both receptors, to better understand the mechanism behind their biological activities, and identify new pharmacological tools to characterize NOP and opioid receptors

    Activities of mixed NOP and mu-opioid receptor ligands.

    No full text
    Background and purpose:Compounds that activate both NOP and mu-opioid receptors might be useful as analgesics and drug abuse medications. Studies were carried out to better understand the biological activity of such compounds.Experimental approach:Binding affinities were determined on membranes from cells transfected with NOP and opioid receptors. Functional activity was determined by [(35)S]GTPgammaS binding on cell membranes and using the mouse vas deferens preparation in vitro and the tail flick antinociception assay in vivo.Key results:Compounds ranged in affinity from SR14150, 20-fold selective for NOP receptors, to buprenorphine, 50-fold selective for mu-opioid receptors. In the [(35)S]GTPgammaS assay, SR compounds ranged from full agonist to antagonist at NOP receptors and most were partial agonists at mu-opioid receptors. Buprenorphine was a low efficacy partial agonist at mu-opioid receptors, but did not stimulate [(35)S]GTPgammaS binding through NOP. In the mouse vas deferens, each compound, except for SR16430, inhibited electrically induced contractions. In each case, except for N/OFQ itself, the inhibition was due to mu-opioid receptor activation, as determined by equivalent results in NOP receptor knockout tissues. SR14150 showed antinociceptive activity in the tail flick test, which was reversed by the opioid antagonist naloxone.Conclusions and implications:Compounds that bind to both mu-opioid and NOP receptors have antinociceptive activity but the relative contribution of each receptor is unclear. These experiments help characterize compounds that bind to both receptors, to better understand the mechanism behind their biological activities, and identify new pharmacological tools to characterize NOP and opioid receptors

    Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice

    No full text
    Identifying preventive targets for Alzheimer’s disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer’s disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APP Swe -PS1 ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase ( Tdo2 ), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APP Swe -PS1 ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers

    Safety and efficacy of transdermal buprenorphine for the relief of cancer pain

    No full text
    Purpose: This study aimed to synthesize the available evidence on the efficacy and safety of transdermal (TD) buprenorphine. Methods: We searched studies in electronic databases. Randomized controlled trials (RCTs) assessing the efficacy of TD buprenorphine comparing with placebo or other comparator drug in relieving cancer pain were included. The primary end points are patient-reported pain intensity and pain relief. For dichotomous data, the summary relative risk (RR) and its 95 % confidence interval (CI) were derived using random-effect model in view of heterogeneity testing. Results: Eight clinical trials (n = 909) were included in the analysis. Only a few studies reported the same outcome in similar way, which created difficulty in the pooling of outcome data. Two studies (n = 288) assessed 'responders' and showed a significant difference between TD buprenorphine and placebo in all three doses of TD buprenorphine, 35.5, 52.5, or 70 ÎĽg/h (RR 1.74, 95 % CI 1.31-2.32; I 2 0 %); the numbers-needed-to-treat was 5.8 (3.9-11). Two studies (n = 331) showed a comparable requirement for rescue SL buprenorphine between TD buprenorphine and placebo (RR 1.25, 95 % CI 0.84-1.88; I 2 0 %). The preferred outcome measure '50 % pain relief' was not reported in any included studies. On the basis of summary quality, further research is likely to have an important impact on our confidence in the estimate. Conclusion: Transdermal buprenorphine has an increasing role for the relief of cancer pain. Further research in this field is needed. Multicentre studies in this field using a common protocol and strict supervision will be more practicable

    NOP-related mechanisms in substance use disorders

    No full text
    Nociceptin/orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995 and has been widely studied since. The role of the N/OFQ system in drug abuse has attracted researchers’ attention since its initial discovery. The first two scientific papers describing the effect of intracranial injection of N/OFQ appeared 20 years ago and reported efficacy of the peptide in attenuating alcohol intake, whereas heroin self-administration was insensitive. Since then more than 100 scientific articles investigating the role of the N/OFQ and N/OFQ receptor (NOP) system in drug abuse have been published. The present article provides an historical overview of the advances in the field with focus on three major elements. First, the most robust data supportive of the efficacy of NOP agonists in treating drug abuse come from studies in the field of alcohol research, followed by psychostimulant and opioid research. In contrast, activation of NOP appears to facilitate nicotine consumption. Second, emerging data challenge the assumption that activation of NOP is the most appropriate strategy to attenuate consumption of substances of abuse. This assumption is based first on the observation that animals carrying an overexpression of NOP system components are more prone to consume substances of abuse, whereas NOP knockout rats are less motivated to self-administer heroin, alcohol, and cocaine. Third, administration of NOP antagonists also reduces alcohol consumption. In addition, NOP blockade reduces nicotine self-administration. Hypothetical mechanisms explaining this apparent paradox are discussed. Finally, we focus on the possibility that co-activation of NOP and mu opioid (MOP) receptors is an alternative strategy, readily testable in the clinic, to reduce the consumption of psychostimulants, opiates, and, possibly, alcohol
    corecore