11,704 research outputs found

    Association between noninvasive fibrosis markers and cardio-vascular organ damage among adults with hepatic steatosis

    Get PDF
    Evidence suggests that advanced fibrosis, as determined by the noninvasive NAFLD fibrosis score (NFS), is a predictor of cardiovascular mortality in individuals with ultrasonography-diagnosed NAFLD. Whether the severity of histology (i.e., fibrosis stage) is associated with more pronounced cardiovascular organ damage is unsettled. In this study, we analyzed the clinical utility of NFS in assessing increased carotid intima-media thickness (cIMT), and left ventricular mass index (LVMI). In this cross-sectional study NFS, cIMT and LVMI were assessed in 400 individuals with ultrasonography-diagnosed steatosis. As compared with individuals at low probability of liver fibrosis, individuals both at high and at intermediate probability of fibrosis showed an unfavorable cardio-metabolic risk profile having significantly higher values of waist circumference, insulin resistance, high sensitivity C-reactive protein (hsCRP), fibrinogen, cIMT, and LVMI, and lower insulin-like growth factor-1 (IGF-1) levels. The differences in cIMT and LVMI remained significant after adjustment for smoking and metabolic syndrome. In a logistic regression model adjusted for age, gender, smoking, and diagnosis of metabolic syndrome, individuals at high probability of fibrosis had a 3.9-fold increased risk of vascular atherosclerosis, defined as cIMT.0.9 mm, (OR 3.95, 95% CI 1.12–13.87) as compared with individuals at low probability of fibrosis. Individuals at high probability of fibrosis had a 3.5-fold increased risk of left ventricular hypertrophy (LVH) (OR 3.55, 95% CI 1.22–10.34) as compared with individuals at low probability of fibrosis. In conclusion, advanced fibrosis, determined by noninvasive fibrosis markers, is associated with cardiovascular organ damage independent of other known factors

    Density matrix modelling of Ge/GeSi bound-to-continuum terahertz quantum cascade lasers

    Get PDF
    In addition to the mainstream III-V quantum cascade lasers (QCLs), Si-based QCLs have attracted considerable research interest in recent years, due to their significant potential advantages including a mature Si processing technology, prospect of integration with Si microelectronics, superior thermal performance to that of III–V devices and absence of optical absorption in the Reststrahlen band [1–3]. Amongst various proposed designs, (001) oriented n-type Ge/GeSi structures utilising L-valley intersubband transitions appear to be the most promising due to a small quantisation effective mass, and hence large optical matrix elements and practically feasible layer widths [4]. All previous simulations for group IV-based QCLs followed the rate equation approach, which is considered not to be accurate enough for predicting the performance of terahertz QCLs, due to its limitation in describing coherent transport [5, 6]. Therefore, a quantum-mechanics approach such as non-equilibrium Green’s function or density matrix is required. Although the former is more accurate, its complexity and computational burden make it difficult to be implemented as a simulation tool. In this work, a density matrix (DM) model for Ge/SiGe QCL simulation has been developed. The existing models have used a reduced set of basis states, leaving out some coherences, which was justified for the particular structures they were used for, but potentially limits their generality and accuracy. In this work, we present an extended DM model, which considers all basis states involved in transport between periods of a QCL. The simulator based on it is sufficiently general to be able to simulate a QCL with any number of states and tight-binding modules per period. This is useful for investigating various QCL structures without modifying the code. It also includes multiple scattering mechanisms existing in Si and Ge quantum wells [4], i.e. intravalley scattering due to interface roughness, alloy disorder, ionized impurities, electron-electron, electron-acoustic phonon and optical phonon interactions, and intervalley phonon scattering. Since the simulator is still quite fast, it was used, in conjunction with a semi-automated optimization algorithm, to improve the predicted performance of bound-to-continuum QCLs, and to compensate for the gain-reduction associated with diffuse Ge/GeSi interfaces

    Elevated hemoglobin glycation index identify non-diabetic individuals at increased risk of kidney dysfunction

    Get PDF
    Hemoglobin glycation index (HGI), calculated as the difference between the observed value of HbA1 and the predicted HbA1c based on plasma glucose concentration, is a measure of the individual tendency toward non-enzymatic hemoglobin glycation which has been found to be positively associated with nephropathy in subjects with diabetes. In this cross-sectional study we aimed to evaluate whether higher HGI levels are associated with impaired kidney function also among nondiabetic individuals. The study group comprised 1505 White nondiabetic individuals stratified in quartiles according to HGI levels. Estimated glomerular filtration rate (eGFR) was calculated by using the MDRD equation. Individuals in the intermediate and high HGI groups exhibited a worse metabolic phenotype with increased levels of visceral obesity, total cholesterol, triglycerides, inflammatory biomarkers such as hsCRP and white blood cells count and lower values of HDL and insulin sensitivity assessed by Matsuda index in comparison to the lowest quartile of HGI. Subjects in the intermediate and high HGI groups displayed a graded decrease of eGFR levels in comparison with the lowest quartile of HGI. In a logistic regression analysis individuals in the highest quartile of HGI exhibited a significantly 3.6-fold increased risk of having chronic kidney disease (95% CI: 1.13-11.24, P = 0.03) and a significantly 1.6-fold increased risk of having a mildly reduced kidney function (95% CI: 1.19-2.28, P = 0.003) in comparison to individuals in the lowest HGI group. In conclusion HGI may be a useful tool to identify nondiabetic individuals with an increased risk of having kidney dysfunction

    Elevated hemoglobin glycation index identify non-diabetic individuals at increased risk of kidney dysfunction

    Get PDF
    Hemoglobin glycation index (HGI), calculated as the difference between the observed value of HbA1 and the predicted HbA1c based on plasma glucose concentration, is a measure of the individual tendency toward non-enzymatic hemoglobin glycation which has been found to be positively associated with nephropathy in subjects with diabetes. In this cross-sectional study we aimed to evaluate whether higher HGI levels are associated with impaired kidney function also among nondiabetic individuals. The study group comprised 1505 White nondiabetic individuals stratified in quartiles according to HGI levels. Estimated glomerular filtration rate (eGFR) was calculated by using the MDRD equation. Individuals in the intermediate and high HGI groups exhibited a worse metabolic phenotype with increased levels of visceral obesity, total cholesterol, triglycerides, inflammatory biomarkers such as hsCRP and white blood cells count and lower values of HDL and insulin sensitivity assessed by Matsuda index in comparison to the lowest quartile of HGI. Subjects in the intermediate and high HGI groups displayed a graded decrease of eGFR levels in comparison with the lowest quartile of HGI. In a logistic regression analysis individuals in the highest quartile of HGI exhibited a significantly 3.6-fold increased risk of having chronic kidney disease (95% CI: 1.13-11.24, P = 0.03) and a significantly 1.6-fold increased risk of having a mildly reduced kidney function (95% CI: 1.19-2.28, P = 0.003) in comparison to individuals in the lowest HGI group. In conclusion HGI may be a useful tool to identify nondiabetic individuals with an increased risk of having kidney dysfunction

    Density matrix modelling of Ge/GeSi quantum cascade terahertz lasers

    Get PDF
    The prospect of making silicon-based quantum cascade lasers (QCLs) has attracted considerable research interest in recent years, due to their significant potential advantages including a mature Si processing technology, the prospect of integration with Si microelectronics, and superior thermal performance to that of III–V devices. Amongst various proposed designs, with different material compositions and substrate orientations, (001)-oriented n-type Ge/GeSi structures utilising L-valley intersubband transitions appear to be the most promising due to a small quantisation effective mass, and hence large optical matrix elements, and practically realisable layer widths. While all the previous simulations for group IV-based QCLs used the rate equation model, this neglects the coherence effects and is of limited usefulness for predicting QCL performance, particularly in the terahertz range. In this work, a quantum-mechanics transport model for Ge/SiGe QCL simulation has been developed, using the density matrix (DM) approach. In contrast to the existing DM formulations which have been used to simulate III-V based QCLs, the present model accounts for the role of all the QCL states in coherent transport, or in optical transitions, or both. The simulator includes all the principal scattering mechanisms in Ge/SiGe heterostructures: intravalley scattering due to interface roughness, alloy disorder, ionized impurities, electron-acoustic phonon and optical phonon interactions, and intervalley phonon scattering. It was used in conjunction with a semi-automated optimization algorithm to identify heterostructure designs for bound-to-continuum Ge/GeSi QCLs, and to compensate for the gain-reduction associated with diffuse Ge/GeSi interfaces

    Serum IgG2 levels are specifically associated with whole-body insulin-mediated glucose disposal in non-diabetic offspring of type 2 diabetic individuals. a cross-sectional study

    Get PDF
    .Preclinical studies suggested that IgG2c isotype may specifically impair skeletal muscle insulin sensitivity in mice. In this study we investigated the association between serum levels of the four IgG subclasses and insulin sensitivity in non-diabetic individuals. Total IgG, IgG1, IgG2, IgG3 and IgG4 levels were measured in 262 subjects. Whole-body insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp. IgG2 levels were positively correlated with BMI, waist circumference, 2-h postload glucose levels and complement C3. Serum IgG2, but not IgG1, IgG3 and IgG4 levels were negatively correlated with whole-body insulin sensitivity (r = −0.17; P = 0.003) and muscle insulin sensitivity index (r = −0.16; P = 0.03) after adjustment for age and gender. No significant correlation was found between IgG2 levels and hepatic insulin resistance assessed by HOMA-IR and liver IR index. In a multivariable regression analysis including variables known to affect insulin sensitivity such as age, gender, BMI, smoking, lipids, inflammatory markers, fasting and 2-h post-load glucose levels, IgG2 levels were independently associated with insulin-stimulated glucose disposal (ÎČ = −0.115, 95% CI: −0.541 to −0.024; P = 0.03). These data demonstrate the independent association between higher levels of IgG2 and decreased whole-body insulin sensitivity, thus confirming in humans the animal-based evidence indicating the pathogenic role of IgG2 in insulin resistance

    Typhlitis

    Get PDF
    Tiflite, sĂ­ndrome fleo-cecal e enterocolite neutropĂ©nica serĂŁo denominaçÔes diversas do que parece ser uma infecção localizada Ă  mucosa cecal, provocada por Clostridia. Habitualmente descrita em doentes neutropĂ©nicos, com leucĂ©mias ou apĂłs terapĂȘutica anti-neoplĂĄsica, tambĂ©m tem sido descrita em doentes infectados por vĂ­rus da imunodeficiĂȘncia humana, como no caso que apresentamos. O seu diagnĂłstico nem sempre Ă© claro, tornando-se ainda mais problemĂĄtico em doentes imunodeprimidos, nos quais mĂșltiplas situaçÔes e podem apresentar com sintomas semelhantes. Todavia a um diagnĂłstico precoce deve seguir-se uma terapĂȘutica mĂ©dica agressiva, e se nalguns casos uma intervenção cirĂșrgica se sorna imperiosa, noutros poderĂĄ ser desnecessĂĄria. O seu controle a mĂ©dio e a longo prazo poderĂĄ ser particularmente difĂ­cil

    MinMax Radon Barcodes for Medical Image Retrieval

    Full text link
    Content-based medical image retrieval can support diagnostic decisions by clinical experts. Examining similar images may provide clues to the expert to remove uncertainties in his/her final diagnosis. Beyond conventional feature descriptors, binary features in different ways have been recently proposed to encode the image content. A recent proposal is "Radon barcodes" that employ binarized Radon projections to tag/annotate medical images with content-based binary vectors, called barcodes. In this paper, MinMax Radon barcodes are introduced which are superior to "local thresholding" scheme suggested in the literature. Using IRMA dataset with 14,410 x-ray images from 193 different classes, the advantage of using MinMax Radon barcodes over \emph{thresholded} Radon barcodes are demonstrated. The retrieval error for direct search drops by more than 15\%. As well, SURF, as a well-established non-binary approach, and BRISK, as a recent binary method are examined to compare their results with MinMax Radon barcodes when retrieving images from IRMA dataset. The results demonstrate that MinMax Radon barcodes are faster and more accurate when applied on IRMA images.Comment: To appear in proceedings of the 12th International Symposium on Visual Computing, December 12-14, 2016, Las Vegas, Nevada, US

    Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations

    Get PDF
    Polarization and radiation reaction (RR) effects in the interaction of a superintense laser pulse (I > 10(23) Wcm(-2)) with a thin plasma foil are investigated with three dimensional particle-in-cell (PIC) simulations. For a linearly polarized laser pulse, strong anisotropies such as the formation of two high-energy clumps in the plane perpendicular to the propagation direction and significant radiation reactions effects are observed. On the contrary, neither anisotropies nor significant radiation reaction effects are observed using circularly polarized laser pulses, for which the maximum ion energy exceeds the value obtained in simulations of lower dimensionality. The dynamical bending of the initially flat plasma foil leads to the self-formation of a quasiparabolic shell that focuses the impinging laser pulse strongly increasing its energy and momentum densities

    Association of Decrease in Body Mass Index With Reduced Incidence and Progression of the Structural Defects of Knee Osteoarthritis: A Prospective Multi-Cohort Study

    Get PDF
    Objective: To define the association between change in body mass index (BMI) and the incidence and progression of the structural defects of knee osteoarthritis as assessed by radiography. Methods: Radiographic analyses of knees at baseline and at 4–5 years of follow-up were obtained from the following 3 independent cohort studies: the Osteoarthritis Initiative (OAI) study, the Multicenter Osteoarthritis Study (MOST), and the Cohort Hip and Cohort Knee (CHECK) study. Logistic regression analyses using generalized estimating equations, with clustering of both knees within individuals, were used to investigate the association between change in BMI from baseline to 4–5 years of follow-up and the incidence and progression of knee osteoarthritis. Results: A total of 9,683 knees (from 5,774 participants) in an “incidence cohort” and 6,075 knees (from 3,988 participants) in a “progression cohort” were investigated. Change in BMI was positively associated with both the incidence and progression of the structural defects of knee osteoarthritis. The adjusted odds ratio (OR) for osteoarthritis incidence was 1.05 (95% confidence interval [95% CI] 1.02–1.09), and the adjusted OR for osteoarthritis progression was 1.05 (95% CI 1.01–1.09). Change in BMI was also positively associated with degeneration (i.e., narrowing) of the joint space and with degeneration of the femoral and tibial surfaces (as indicated by osteophytes) on the medial but not on the lateral side of the knee. Conclusion: A decrease in BMI was independently associated with lower odds of incidence and progression of the structural defects of knee osteoarthritis and could be a component in preventing the onset or worsening of knee osteoarthritis
    • 

    corecore