934 research outputs found

    Zebrafish disease models to study the pathogenesis of inherited manganese transporter defects and provide a route for drug discovery

    Get PDF
    Although manganese is required as an essential trace element excessive amounts are neurotoxic and lead to manganism, an extrapyramidal movement disorder associated with deposition of manganese in the basal ganglia. Recently, we have identified the first inborn error of manganese metabolism caused by mutations in SLC30A10, encoding a manganese transporter facilitating biliary manganese excretion. Treatment is limited to chelation therapy with intravenous disodium calcium edetate which is burdensome due to its route of administration and associated with high socioeconomic costs. Whole exome sequencing in patients with inherited hypermanganesaemia and early-onset parkinsonism-dystonia but absent SLC30A10 mutations identified SLC39A14 as a novel disease gene associated with manganese dyshomeostasis. Zebrafish loss-of-function mutants for slc30a10 (slc30a10U800) and slc39a14 (slc39a14U801) were generated using TALEN and CRISPR/Cas9 genome editing technologies in order to model these Mn transporter defects in vivo. Both mutants demonstrate prominent manganese accumulation during larval development. Adult slc39a14U801 mutants show significantly increased brain manganese levels similar to the human phenotype. During larval stages slc39a14U801 mutants display increased sensitivity to manganese toxicity, reduced locomotor activity and visual impairment upon manganese exposure. This phenotype is accompanied by a reduction of tyrosine hydroxylase positive cells in the ventral diencephalon suggesting an involvement of dopaminergic circuits. RNA sequencing further identified genes involved in neurotransmitter release and signalling, phototransduction, circadian clock, and hypoxia inducible factor (HIF) signalling to be affected by manganese dyshomeostasis. In summary, slc30a10U800 and slc39A14U801 zebrafish mutants provide disease models of inherited manganese transporter defects that allow the study of disease mechanisms to identify novel therapeutic targets with the view to improve clinical treatment strategies

    Hyperphosphatasia with mental retardation syndrome 3: Cerebrospinal fluid abnormalities and correction with pyridoxine and Folinic acid

    Get PDF
    Glycosylphosphatidylinositol anchored proteins (GPI-APs) represent a class of molecules attached to the external leaflet of the plasma membrane by the GPI anchor where they play important roles in numerous cellular processes including neurogenesis, cell adhesion, immune response and signalling. Within the group of GPI anchor defects, six present with the clinical phenotype of Hyperphosphatasia with Mental Retardation Syndrome (HPMRS, Mabry Syndrome) characterized by moderate to severe intellectual disability, dysmorphic features, hypotonia, seizures and persistent hyperphosphatasia. We report the case of a 5-year-old female with global developmental delay associated with precocious puberty and persistently raised plasma alkaline phosphatase. Targeted next generation sequencing analysis of the HPMRS genes identified novel compound heterozygous variants in the PGAP2 gene (c.103del p.(Leu35Serfs*90)and c.134Aā€‰>ā€‰Gp.(His45Arg)) consistent with the diagnosis of HPMRS type 3. Cerebrospinal fluid (CSF) neurotransmitter analysis showed low levels of pyridoxal phosphate and 5-methyltetrahydrofolate and raised homovanillic acid. Supplementation with pyridoxine and folinic acid led to normalization of biochemical abnormalities. The patient continues to make developmental progress with significant improvement in speech and fine motor skills. Our reported case expands the clinical spectrum of HPMRS3 in which multisystem involvement is being increasingly recognized. Furthermore, it shows that miss-targeting GPI-APs and the effect on normal cellular function could provide a physiopathologic explanation for the CSF biochemical abnormalities with management implications for a group of disorders that currently has no treatment that can lead possibly to improved clinical outcomes

    RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals

    Get PDF
    Double-stranded RNA (dsRNA) directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). Using a recently developed Drosophila in vitro system, we examined the molecular mechanism underlying RNAi. We find that RNAi is ATP dependent yet uncoupled from mRNA translation. During the RNAi reaction, both strands of the dsRNA are processed to RNA segments 21-23 nucleotides in length. Processing of the dsRNA to the small RNA fragments does not require the targeted mRNA. The mRNA is cleaved only within the region of identity with the dsRNA. Cleavage occurs at sites 21-23 nucleotides apart, the same interval observed for the dsRNA itself, suggesting that the 21-23 nucleotide fragments from the dsRNA are guiding mRNA cleavage

    MicroRNA targets in Drosophila.

    Get PDF
    BACKGROUND: The recent discoveries of microRNA (miRNA) genes and characterization of the first few target genes regulated by miRNAs in Caenorhabditis elegans and Drosophila melanogaster have set the stage for elucidation of a novel network of regulatory control. We present a computational method for whole-genome prediction of miRNA target genes. The method is validated using known examples. For each miRNA, target genes are selected on the basis of three properties: sequence complementarity using a position-weighted local alignment algorithm, free energies of RNA-RNA duplexes, and conservation of target sites in related genomes. Application to the D. melanogaster, Drosophila pseudoobscura and Anopheles gambiae genomes identifies several hundred target genes potentially regulated by one or more known miRNAs. RESULTS: These potential targets are rich in genes that are expressed at specific developmental stages and that are involved in cell fate specification, morphogenesis and the coordination of developmental processes, as well as genes that are active in the mature nervous system. High-ranking target genes are enriched in transcription factors two-fold and include genes already known to be under translational regulation. Our results reaffirm the thesis that miRNAs have an important role in establishing the complex spatial and temporal patterns of gene activity necessary for the orderly progression of development and suggest additional roles in the function of the mature organism. In addition the results point the way to directed experiments to determine miRNA functions. CONCLUSIONS: The emerging combinatorics of miRNA target sites in the 3' untranslated regions of messenger RNAs are reminiscent of transcriptional regulation in promoter regions of DNA, with both one-to-many and many-to-one relationships between regulator and target. Typically, more than one miRNA regulates one message, indicative of cooperative translational control. Conversely, one miRNA may have several target genes, reflecting target multiplicity. As a guide to focused experiments, we provide detailed online information about likely target genes and binding sites in their untranslated regions, organized by miRNA or by gene and ranked by likelihood of match. The target prediction algorithm is freely available and can be applied to whole genome sequences using identified miRNA sequences

    Identification of tissue-specific microRNAs from mouse

    Get PDF
    MicroRNAs (miRNAs) are a new class of noncoding RNAs, which are encoded as short inverted repeats in the genomes of invertebrates and vertebrates [1, 2]. It is believed that miRNAs are modulators of target mRNA translation and stability, although most target mRNAs remain to be identified. Here we describe the identification of 34 novel miRNAs by tissue- specific cloning of approximately 21-nucleotide RNAs from mouse. Almost all identified miRNAs are conserved in the human genome and are also frequently found in nonmammalian vertebrate genomes, such as pufferfish. In heart, liver, or brain, it is found that a single, tissue-specifically expressed miRNA dominates the population of expressed miRNAs and suggests a role for these miRNAs in tissue specification or cell lineage decisions. Finally, a miRNA was identified that appears to be the fruitfly and mammalian ortholog of C. elegans lin-4 stRNA

    Human MicroRNA targets.

    Get PDF
    MicroRNAs (miRNAs) interact with target mRNAs at specific sites to induce cleavage of the message or inhibit translation. The specific function of most mammalian miRNAs is unknown. We have predicted target sites on the 3' untranslated regions of human gene transcripts for all currently known 218 mammalian miRNAs to facilitate focused experiments. We report about 2,000 human genes with miRNA target sites conserved in mammals and about 250 human genes conserved as targets between mammals and fish. The prediction algorithm optimizes sequence complementarity using position-specific rules and relies on strict requirements of interspecies conservation. Experimental support for the validity of the method comes from known targets and from strong enrichment of predicted targets in mRNAs associated with the fragile X mental retardation protein in mammals. This is consistent with the hypothesis that miRNAs act as sequence-specific adaptors in the interaction of ribonuclear particles with translationally regulated messages. Overrepresented groups of targets include mRNAs coding for transcription factors, components of the miRNA machinery, and other proteins involved in translational regulation, as well as components of the ubiquitin machinery, representing novel feedback loops in gene regulation. Detailed information about target genes, target processes, and open-source software for target prediction (miRanda) is available at http://www.microrna.org. Our analysis suggests that miRNA genes, which are about 1% of all human genes, regulate protein production for 10% or more of all human genes
    • ā€¦
    corecore