6,512 research outputs found

    Novel Data Acquisition System for Silicon Tracking Detectors

    Full text link
    We have developed a novel data acquisition system for measuring tracking parameters of a silicon detector in a particle beam. The system is based on a commercial Analog-to-Digital VME module and a PC Linux based Data Acquisition System. This DAQ is realized with C++ code using object-oriented techniques. Track parameters for the beam particles were reconstructed using off-line analysis code and automatic detector position alignment algorithm. The new DAQ was used to test novel Czochralski type silicon detectors. The important silicon detector parameters, including signal size distributions and signal to noise distributions, were successfully extracted from the detector under study. The efficiency of the detector was measured to be 95 %, the resolution about 10 micrometers, and the signal to noise ratio about 10.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, LaTeX, 5 eps figures. PSN TUGP00

    Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)

    Get PDF
    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. Together with previous data taking at a rigidity of -20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3 without centrality requirements. We measured nuclei and antinuclei (p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei are mainly produced via the coalescence mechanism. However the centrality dependence of the antibaryon to baryon ratios show that antibaryons are diminished due to annihilation and breakup reactions in the hadron dense environment. The volume of the particle source extracted from coalescence models agrees with results from pion interferometry for an expanding source. The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide with each other and with the thermal freeze-out of hadrons.Comment: 12 pages, 8 figures, to appear in the proceedings of the conference on 'Fundamental Issues in Elementary Matter' Bad Honnef, Germany, Sept. 25-29, 200
    corecore