198 research outputs found

    Overweight and obese patients with nickel allergy have a worse metabolic profile compared to weight matched non-allergic individuals

    Get PDF
    A lack of balance between energy intake and expenditure due to overeating or reduced physical activity does not seem to explain entirely the obesity epidemic we are facing, and further factors are therefore being evaluated. Nickel (Ni) is a ubiquitous heavy metal implied in several health conditions. Regarding this, the European Food Safety Authority has recently released an alert on the possible deleterious effects of dietary Ni on human health given the current levels of Ni dietary intake in some countries. Pre-clinical studies have also suggested its role as an endocrine disruptor and have linked its exposure to energy metabolism and glucose homeostasis dysregulation. Ni allergy is common in the general population, but preliminary data suggest it being even more widespread among overweight patients. OBJECTIVES: The aim of this study has been to evaluate the presence of Ni allergy and its association with the metabolic and endocrine profile in overweight and obese individuals. METHODS: We have evaluated 1128 consecutive overweight and obese outpatients. 784 were suspected of being allergic to Ni and 666 were assessed for it. Presence of Ni allergy and correlation with body mass index (BMI), body composition, metabolic parameters and hormonal levels were evaluated. RESULTS: We report that Ni allergy is more frequent in presence of weight excess and is associated with worse metabolic parameters and impaired Growth Hormone secretion. CONCLUSIONS: We confirm that Ni allergy is more common in obese patients, and we report for the first time its association with worse metabolic parameters and impaired function of the GH-IGF1 axis in human subjects

    Predicting Isoform-Selective Carbonic Anhydrase Inhibitors via Machine Learning and Rationalizing Structural Features Important for Selectivity

    Get PDF
    Carbonic anhydrases (CAs) catalyze the physiological hydration of carbon dioxide and are among the most intensely studied pharmaceutical target enzymes. A hallmark of CA inhibition is the complexation of the catalytic zinc cation in the active site. Human (h) CA isoforms belonging to different families are implicated in a wide range of diseases and of very high interest for therapeutic intervention. Given the conserved catalytic mechanisms and high similarity of many hCA isoforms, a major challenge for CA-based therapy is achieving inhibitor selectivity for hCA isoforms that are associated with specific pathologies over other widely distributed isoforms such as hCA I or hCA II that are of critical relevance for the integrity of many physiological processes. To address this challenge, we have attempted to predict compounds that are selective for isoform hCA IX, which is a tumor-associated protein and implicated in metastasis, over hCA II on the basis of a carefully curated data set of selective and nonselective inhibitors. Machine learning achieved surprisingly high accuracy in predicting hCA IX-selective inhibitors. The results were further investigated, and compound features determining successful predictions were identified. These features were then studied on the basis of X-ray structures of hCA isoform-inhibitor complexes and found to include substructures that explain compound selectivity. Our findings lend credence to selectivity predictions and indicate that the machine learning models derived herein have considerable potential to aid in the identification of new hCA IX-selective compounds

    Clinical inertia is the enemy of therapeutic success in the management of diabetes and its complications: A narrative literature review

    Get PDF
    Diabetes mellitus is a chronic disease characterized by high social, economic and health burden, mostly due to the high incidence and morbidity of diabetes complications. Numerous studies have shown that optimizing metabolic control may reduce the risk of micro and macrovascular complications related to the disease, and the algorithms suggest that an appropriate and timely step of care intensification should be proposed after 3 months from the failure to achieve metabolic goals. Nonetheless, many population studies show that glycemic control in diabetic patients is often inadequate. The phenomenon of clinical inertia in diabetology, defined as the failure to start a therapy or its intensification/de-intensification when appropriate, has been studied for almost 20 years, and it is not limited to diabetes care, but also affects other specialties. In the present manuscript, we have documented the issue of inertia in its complexity, assessing its dimensions, its epidemiological weight, and its burden over the effectiveness of care. Our main goal is the identification of the causes of clinical inertia in diabetology, and the quantification of its social and health-related consequences through the adoption of appropriate indicators, in an effort to advance possible solutions and proposals to fight and possibly overcome clinical inertia, thus improving health outcomes and quality of care

    Growth performances, chemical composition, and microbiological loads of mealworm reared with brewery spent grains and bread leftovers

    Get PDF
    Tenebrio molitor (mealworm) larvae are one of the most intriguing edible insects, and they may be raised on a variety of substrates, including by-products, side-stream products, and former foodstuff. The substrates could affect drastically the productive performances as well as the chemical-nutritional value of the larvae. In this study we tested two main substrate ingredients, brewery spent grains (SG) and bread leftovers (B), without adding any other dry ingredients. In order to correlate the chemical composition of the substrates to the larvae characteristics, five different diets were tested as 100% of a single ingredient (SG100 and B100), 75–25% mixes (SG75B25 and SG25B75) and 50–50% mixes (SG50B50). The effects of the substrate were tested on the development rates, chemical composition, and microbial loads of mealworm larvae. The effects of fasting, washing, and cooking were also tested on the microbiological determinations. Results indicate that all the parameters were affected by the chemical compositions of the substrates. The larvae fed the higher contents of SG showed the best growth performances along with higher nutritional values. The diet with only bread (B100) showed the worst parameters, both on the growth performances and on the nutritive values. Microbial loads were also affected by the diets, with minor effects in relation to the washing and fasting procedures, while cooking drastically reduced all the microbial loads. Taking into account that the two employed ingredients were former foodstuff or by-products it is important to highlight the capacity of mealworms to positively convert side-stream materials into rich nutritional animal products.Highlights Mealworm could be proficiently reared on brewery spent grains and bread leftovers converting them into nutritional animal products. Mealworm productive performances and nutritional value could be affected by the employed substrate. Evidence of high mealworms plasticity and potential tailor made of the final outcomes

    Exosite inhibition of ADAMTS-5 by a glycoconjugated arylsulfonamide

    Get PDF
    ADAMTS-5 is a major protease involved in the turnover of proteoglycans such as aggrecan and versican. Dysregulated aggrecanase activity of ADAMTS-5 has been directly linked to the etiology of osteoarthritis (OA). For this reason, ADAMTS-5 is a pharmaceutical target for the treatment of OA. ADAMTS-5 shares high structural and functional similarities with ADAMTS-4, which makes the design of selective inhibitors particularly challenging. Here we exploited the ADAMTS-5 binding capacity of β-N-acetyl-d-glucosamine to design a new class of sugar-based arylsulfonamides. Our most promising compound, 4b, is a non-zinc binding ADAMTS-5 inhibitor which showed high selectivity over ADAMTS-4. Docking calculations combined with molecular dynamics simulations demonstrated that 4b is a cross-domain inhibitor that targets the interface of the metalloproteinase and disintegrin-like domains. Furthermore, the interaction between 4b and the ADAMTS-5 Dis domain is mediated by hydrogen bonds between the sugar moiety and two lysine residues (K532 and K533). Targeted mutagenesis of these two residues confirmed their importance both for versicanase activity and inhibitor binding. This positively-charged cluster of ADAMTS-5 represents a previously unknown substrate-binding site (exosite) which is critical for substrate recognition and can therefore be targeted for the development of selective ADAMTS-5 inhibitors

    Exosite inhibition of ADAMTS-5 by a glycoconjugated arylsulfonamide

    Get PDF
    ADAMTS-5 is a major protease involved in the turnover of proteoglycans such as aggrecan and versican. Dysregulated aggrecanase activity of ADAMTS-5 has been directly linked to the etiology of osteoarthritis (OA). For this reason, ADAMTS-5 is a pharmaceutical target for the treatment of OA. ADAMTS-5 shares high structural and functional similarities with ADAMTS-4, which makes the design of selective inhibitors particularly challenging. Here we exploited the ADAMTS-5 binding capacity of β-N-acetyl-d-glucosamine to design a new class of sugar-based arylsulfonamides. Our most promising compound, 4b, is a non-zinc binding ADAMTS-5 inhibitor which showed high selectivity over ADAMTS-4. Docking calculations combined with molecular dynamics simulations demonstrated that 4b is a cross-domain inhibitor that targets the interface of the metalloproteinase and disintegrin-like domains. Furthermore, the interaction between 4b and the ADAMTS-5 Dis domain is mediated by hydrogen bonds between the sugar moiety and two lysine residues (K532 and K533). Targeted mutagenesis of these two residues confirmed their importance both for versicanase activity and inhibitor binding. This positively-charged cluster of ADAMTS-5 represents a previously unknown substrate-binding site (exosite) which is critical for substrate recognition and can therefore be targeted for the development of selective ADAMTS-5 inhibitors

    Current evidence to propose different food supplements for weight loss: a comprehensive review

    Get PDF
    The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination

    Development of a fluorogenic ADAMTS-7 substrate

    Get PDF
    The extracellular protease ADAMTS-7 has been identified as a potential therapeutic target in atherosclerosis and associated diseases such as coronary artery disease (CAD). However, ADAMTS-7 inhibitors have not been reported so far. Screening of inhibitors has been hindered by the lack of a suitable peptide substrate and, consequently, a convenient activity assay. Here we describe the first fluorescence resonance energy transfer (FRET) substrate for ADAMTS-7, ATS7FP7. ATS7FP7 was used to measure inhibition constants for the endogenous ADAMTS-7 inhibitor, TIMP-4, as well as two hydroxamate-based zinc chelating inhibitors. These inhibition constants match well with IC50 values obtained with our SDS-PAGE assay that uses the N-terminal fragment of latent TGF-β–binding protein 4 (LTBP4S-A) as a substrate. Our novel fluorogenic substrate ATS7FP7 is suitable for high throughput screening of ADAMTS-7 inhibitors, thus accelerating translational studies aiming at inhibition of ADAMTS-7 as a novel treatment for cardiovascular diseases such as atherosclerosis and CAD

    Bioactive Recombinant Human Oncostatin M for NMR-Based Screening in Drug Discovery

    Get PDF
    Oncostatin M (OSM) is a pleiotropic, interleukin-6 family inflammatory cytokine that plays an important role in inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis, and cancer progression and metastasis. Recently, elevated OSM levels have been found in the serum of COVID-19 patients in intensive care units. Multiple anti-OSM therapeutics have been investigated, but to date no OSM small molecule inhibitors are clinically available. To pursue a high-throughput screening and structure-based drug discovery strategy to design a small molecule inhibitor of OSM, milligram quantities of highly pure, bioactive OSM are required. Here, we developed a reliable protocol to produce highly pure unlabeled and isotope enriched OSM from E. coli for biochemical and NMR studies. High yields (ca. 10 mg/L culture) were obtained in rich and minimal defined media cultures. Purified OSM was characterized by mass spectrometry and circular dichroism. The bioactivity was confirmed by induction of OSM/OSM receptor signaling through STAT3 phosphorylation in human breast cancer cells. Optimized buffer conditions yielded 1H, 15N HSQC NMR spectra with intense, well-dispersed peaks. Titration of 15N OSM with a small molecule inhibitor showed chemical shift perturbations for several key residues with a binding affinity of 12.2 ± 3.9 μM. These results demonstrate the value of bioactive recombinant human OSM for NMR-based small molecule screening

    Shedding X-ray Light on the Role of Magnesium in the Activity of Mycobacterium tuberculosis Salicylate Synthase (MbtI) for Drug Design

    Get PDF
    The Mg2+-dependent Mycobacterium tuberculosis salicylate synthase (MbtI) is a key enzyme involved in the biosynthesis of siderophores. Because iron is essential for the survival and pathogenicity of the microorganism, this protein constitutes an attractive target for antitubercular therapy, also considering the absence of homologous enzymes in mammals. An extension of the structure-activity relationships of our furan-based candidates allowed us to disclose the most potent competitive inhibitor known to date (10, Ki = 4 μM), which also proved effective on mycobacterial cultures. By structural studies, we characterized its unexpected Mg2+-independent binding mode. We also investigated the role of the Mg2+ cofactor in catalysis, analyzing the first crystal structure of the MbtI-Mg2+-salicylate ternary complex. Overall, these results pave the way for the development of novel antituberculars through the rational design of improved MbtI inhibitors
    • …
    corecore