
Predicting Isoform-Selective Carbonic Anhydrase Inhibitors via
Machine Learning and Rationalizing Structural Features Important
for Selectivity
Salvatore Galati, Dimitar Yonchev, Raquel Rodríguez-Peŕez, Martin Vogt, Tiziano Tuccinardi,*
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ABSTRACT: Carbonic anhydrases (CAs) catalyze the physiological hydration of carbon
dioxide and are among the most intensely studied pharmaceutical target enzymes. A hallmark
of CA inhibition is the complexation of the catalytic zinc cation in the active site. Human (h)
CA isoforms belonging to different families are implicated in a wide range of diseases and of
very high interest for therapeutic intervention. Given the conserved catalytic mechanisms and
high similarity of many hCA isoforms, a major challenge for CA-based therapy is achieving
inhibitor selectivity for hCA isoforms that are associated with specific pathologies over other
widely distributed isoforms such as hCA I or hCA II that are of critical relevance for the
integrity of many physiological processes. To address this challenge, we have attempted to
predict compounds that are selective for isoform hCA IX, which is a tumor-associated protein
and implicated in metastasis, over hCA II on the basis of a carefully curated data set of
selective and nonselective inhibitors. Machine learning achieved surprisingly high accuracy in
predicting hCA IX-selective inhibitors. The results were further investigated, and compound
features determining successful predictions were identified. These features were then studied
on the basis of X-ray structures of hCA isoform-inhibitor complexes and found to include substructures that explain compound
selectivity. Our findings lend credence to selectivity predictions and indicate that the machine learning models derived herein have
considerable potential to aid in the identification of new hCA IX-selective compounds.

1. INTRODUCTION

Human carbonic anhydrases (hCAs) are metalloenzymes that
catalyze a reversible hydration of carbon dioxide producing
bicarbonate with the release of a proton.1 Among the eight
genetically distinct CA families (α, β, γ, δ, ζ, η, θ, and ι), 15 α-
CA isoforms are known in humans, i.e., hCA I−hCA XIV,
which include two V-type isoforms (hCA VA and hCA VB)
that differ in cellular distribution and functions. These
metalloenzymes are involved in numerous physiological
processes such as pH regulation, CO2 homeostasis, bone
resorption, and gluconeogenesis.2 Due to the wide spectrum of
physiological roles played by CAs, they have been shown to be
involved in different diseases such as glaucoma, obesity,
osteoporosis, various types of tumors, epilepsy, and neuro-
pathic pain. Therefore, hCAs are regarded as important
therapeutic targets, and hCA modulators are recognized as
promising agents for clinical applications.3 Among the different
hCA isoforms, hCA IX and XII are predominantly found in
tumor cells and show a rather limited diffusion in normal cells.
Both isoforms are multidomain trans-membrane proteins with
an extracellular CA domain and were demonstrated to
participate in the rather complex machinery of pH regulation.4

In particular, the membrane-associated hCA IX is considered a

tumor-associated protein due to its low level of expression in
normal tissues and high overexpression in almost all hypoxic
tumors, where it contributes to survival, proliferation, invasion,
and metastasis of cancer cells.5 For these reasons, the hCA IX
isoform has attracted the attention of many researchers
focusing their efforts on the development of potent hCA IX
inhibitors. As a result, a plethora of inhibitors has been
reported in literature with compounds mainly belonging to the
sulfonamide, dithiocarbamate, coumarin, sulfocoumarin, sulfa-
mate, and carboxylate classes. Furthermore, an ongoing clinical
trial (NCT03450018) is evaluating the sulfonamide inhibitor
SLC-0111 in hCA IX-positive patients diagnosed with
metastatic pancreatic ductal adenocarcinoma.6

At present, many compounds that act as low nanomolar or
subnanomolar hCA IX inhibitors are known; however, beyond
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inhibitory potency, an important key feature that must be
considered for a potential therapeutic application of these
compounds is their selectivity against the other hCA isoforms
and especially against hCA I/II, which are ubiquitously
distributed and involved in key physiological processes.7 This
is particularly true for hCA II since it has the widest tissue
distribution and is highly expressed in red blood cells.8 Because
most of the drugs are administered systemically and are
membrane-permeable, hCA II is likely to sequester non-
selective hCA inhibitors reducing their circulating concen-
trations, decreasing their bioavailability for hCA IX, and thus
limiting their exposure within tumors.9

Overcoming the lack of selectivity for a specific hCA isoform
represents the major challenge in the development of hCA
inhibitors for therapy. The difficulty in finding a compound
selective for a specific hCA isoform is due to the high sequence
and structural homology shared by all hCA isoforms.10 The
large number of compounds reported in literature tested for
their inhibition activity against hCA IX and hCA II has
prompted us to generate a database of compounds with
selectivity for hCA IX over hCA II or nonselective. Machine
learning (ML) was then applied to predict isoform-selective
inhibitors, and compound features determining successful
predictions were identified. The resulting feature patterns were
further analyzed on the basis of X-ray structures of hCA-
inhibitor complexes, revealing individual features that were
directly implicated in isoform selectivity.

2. MATERIALS AND METHODS
2.1. Compound Data Sets. Our compound collection was

assembled from publicly available data extracted from the
PubChem BioAssay database (accessed September 2019).11

Compounds with measured potencies against hCA II and hCA
IX (corresponding to UniProt IDs “P00918” and “Q16790”,
respectively) were collected. In order to ensure homogeneous
experimental conditions and inter-assay data consistency,12

only assays originating from the laboratory of C. T. Supuran
were considered, which amounted to a total of 1138 assays
(PubChem AIDs) and 7121 compounds (CIDs). We intended
to generate a comprehensive and intrinsically heterogeneous
set of inhibitors covering different variants of inhibitory
mechanisms, all of which were directed against the active site
of hCA. Since we aimed at predicting isoform selectivity of
hCA inhibitors and rationalizing these predictions, we
considered it important to comprehensively analyze different
types of inhibitors, which further challenged machine learning.
Training and test instances were available for all types of
inhibitors and considered in combination. Accordingly, the
results were generalizable (and not confined to subsets of
inhibitors). Only enzyme-inhibitor interactions for which
numerically defined inhibition constants (Ki values) were
available were considered. No Ki threshold was applied for
inhibitors. If two Ki values were available for a compound, then
preference was given to the one reported in the source
publication. For compounds with three or more measure-
ments, Ki values deviating by more than 25% from the
calculated mean Ki were discarded, and the mean Ki value was
recalculated and assigned as the final potency annotation.
Applying these criteria resulted in a total of 2506 inhibitors
tested against both hCA isoforms for which a subsequent
selectivity analysis was carried out. For each ligand, a selectivity
index (SI) was calculated as the difference between the
measured negative logarithmic (pKi) values for hCA IX and

hCA II. Hence, compounds with SI > 0.7, corresponding to at
least a five-fold higher potency for hCA IX over hCA II, were
categorized as selective hCA IX inhibitors. Conversely,
compounds with SI ≤ 0.7 were classified as nonselective
hCA inhibitors. This classification scheme yielded a data set of
870 hCA IX-selective and 1636 nonselective inhibitors.

2.2. Molecular Representation. Building ML models for
distinguishing between selective and nonselective hCA
inhibitors requires the use of molecular representations such
as numerical descriptors or fingerprints. Therefore, for each
compound, a modified version of the molecular graph-based
(i.e., the stereochemically insensitive) extended connectivity
fingerprint with bond diameter 4 (ECFP4)13 was calculated
using the Morgan fingerprint implementation of RDKit.14

ECFPs account for specific atom environments (for ECFP4,
those within a radius of two bonds around an atom), which are
represented as hash values. In cheminformatic ML applica-
tions, ECFP4 has become a widely accepted standard
representation for compounds with comparable or superior
performance relative to other (fingerprint) descriptors.15 The
ECFP4 hash values for all unique atom environments in each
data set compound were computed, resulting in a total of 6061
unique structural features. The hash value positions in the
molecular feature vectors were then organized according to
their frequency of occurrence in a descending manner. Hence,
for each compound, the presence or absence of a specific
structural feature determined whether its corresponding bit
position in the 6061-dimensional molecular feature vector was
set to 1 or 0. This procedure did not include any additional
dimensionality reduction such as standard fingerprint “folding”
into a predefined fixed-length vector and hence avoided
potential bit collisions that may be caused by ambiguous
feature-bit mappings. As a result, unambiguous reverse
mapping of fingerprints to their corresponding structural
features allowed for the visualization and assessment of the
importance of individual features during ML classification.

2.3. Structural Organization. To identify analog series
(ASs) formed by hCA inhibitors, data set compounds were
subjected to bond fragmentation according to a set of
retrosynthetic rules and organized into analog series (ASs)
using the compound-core relationship algorithm.16 Accord-
ingly, compounds containing the same structural core and
different substituents were combined into an AS.

2.4. Machine Learning Methods. 2.4.1. Random Forest.
A random forest (RF) is a supervised ML algorithm that
consists of a large number of individual decision trees forming
an ensemble classifier. Each individual tree produces a class
label prediction for a given data instance, and the final
prediction outcome is determined by the majority class vote.17

Class weight balancing was automatically inferred by the model
as inversely proportional to the class label frequencies in the
input data. All remaining hyperparameters were set to their
default values in scikit-learn version 0.23.1.18

2.4.2. Support Vector Machine. A support vector machine
(SVM) is a supervised ML algorithm that constructs a
hyperplane or set of hyperplanes in a multidimensional feature
space, which are used for classification or regression. In the
case of classification, acceptable separation is achieved by a
hyperplane having the largest distance to the nearest training
data points of any class. Thus, maximizing the margin lowers
the generalization error of the classifier.19

Furthermore, kernel functions enable the algorithm to
operate in a high-dimensional implicit feature space. Instead
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of explicitly computing the data coordinates in that space, the
inner products of their pairwise projections are calculated. This
approach is commonly referred to as the “kernel trick” and
presents a computationally efficient alternative to explicit
dimensionality expansion.20 Accordingly, if linear separation
via a hyperplane is not feasible in a given feature space, then
the kernel trick facilitates implicit mapping of training
compounds into a higher-dimensional feature space where
linear separation might become feasible. Herein, the linear and
Tanimoto kernels21 were used, and the better performing
kernel was selected for each model during internal cross
validation (see below). The regularization parameter C
determines the magnitude of error penalization and balances
model performance in the training set and overfitting. During
parameter optimization, C values 0.01, 0.1, 1, 10, and 100 were
evaluated. SVM training was performed using scikit-learn
version 0.23.1.
2.5. Cross Validation and Performance Measures. All

ML calculations were carried out by applying a standard
double cross validation procedure. First, the ECFP4
representations of selective and nonselective inhibitors were
assigned classification labels of “1” and “0”, respectively. Then,
the data set was recurrently divided 10 times by random
sampling into 80% training and 20% test compounds.
Calculation parameters specified above were optimized via
internal five-fold cross validation on the training set, and the
best performing parameter settings were used for test set
predictions. Based on the predictions from the 10 independent
external cross validation trials, the following measures were
computed in order to evaluate model performance: balanced
accuracy (BA),22 F1 score,23 and Matthew’s correlation
coefficient (MCC),24 defined as follows

=
+

+
+

BA
0.5TP

TP FN
0.5TN

TN FP

= × − ×
+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

=
+ +

F1
2TP

2TP FP FN

TP, TN, FP, and FN abbreviate true positives, true
negatives, false positives, and false negatives, respectively.
Here, TP + FN corresponds to the total number of selective
compounds; conversely, FP + TN corresponds to the total
number of nonselective compounds.
As indicated by its formula, MCC takes into account all

values of the confusion matrix derived from binary
classification. It has the range [−1,1] where MCC = 1
represents a perfect classification (with no FP and FN), MCC
= 0 is equivalent to random classification, and MCC = −1
indicates complete disagreement between predicted and actual
class labels. BA accounts for the fraction of correct predictions
while taking data imbalance into account through equivalent
weighting. This was another appropriate measure for our
analysis because the compound data set contained approx-
imately twice as many nonselective (negative class) as selective
(positive class) compounds. BA has the range [0,1] with BA =
1 describing perfect, BA = 0.5 random, and BA = 0 completely
inaccurate classifications, respectively. The F1 score is a
composite measure representing the harmonic mean of
precision and recall. It strongly emphasizes TP values without

taking TN values into consideration. High F1 values indicate
good model performance.
In addition, receiver operating characteristic (ROC)

curves25 were computed to compare the TP rate ([0, 1], y-
axis) to the FP rate ([0, 1], x-axis) at different classification
thresholds, and the area under the ROC curve (AUROC) was
determined.25 In a ROC curve, the diagonal line is equivalent
to a random class prediction and yields an AUROC value of
0.5. Increasing AUROC values between 0.5 and 1 are
indicative of increasing model performance, with the value of
1.0 representing a perfect prediction.
Furthermore, to ensure statistically sound comparisons of

individual inhibitors, we also required that each inhibitor was
predicted as a test set compound in at least five different
external cross validation trials. This criterion was met after 26
trials, and for each selective and nonselective inhibitor, “model
prediction consistency” (MPC) was calculated as follows

[ ] = ×MPC %
TP

Number of predictions
100selective

[ ] = ×MPC % T
N

Number of predictions
100nonselective

Accordingly, an MPC value of 100% indicated that a
compound was consistently correctly classified. Conversely, an
MPC value of 0% resulted from consistently incorrect
classification in each trial.

2.6. Feature Weighting and Frequency Analysis. To
identify individual structural features determining the classi-
fication, corresponding feature weights (FWs) were extracted
from SVM models. For FW extraction, two previously
introduced methods using the Tanimoto kernel were
applicable.26,27 In addition to their numerical values, FWs
were assigned positive or negative signs depending on their
relative importance for predicting a specific class label.
According to this definition, the SVM model assigned a
positive sign to a feature if its presence predominantly
determined the prediction of selective inhibitors. In contrast,
a feature with a negative sign predominantly determined the
identification of nonselective inhibitors.
The corresponding frequency distributions for selective and

nonselective compounds, respectively, were defined as

=
#

#
f

iSelective compounds with feature
Selective compoundsiselective,

=
#

#
f

iNonselective compounds with feature
Nonselective compoundsinonselective,

In order to determine whether the presence of a given
structural feature was more important for the identification of
selective or nonselective inhibitors, a frequency difference
value ΔF was calculated for each feature i

Δ = −F f fi i iselective, nonselective,

Thus, features with positive ΔF values were preferentially
found in selective hCA IX inhibitors, whereas negative ΔF
values indicated features that preferentially occurred in
nonselective inhibitors. Furthermore, features that were
exclusively found in selective or nonselective compounds
were identified and prioritized.

2.7. Analysis of X-ray Structures. Key features
determining predictions were further analyzed on the basis of
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publicly available X-ray structures of hCA II and hCA IX in
complex with inhibitors. A total of 488 hCA II, 11 hCA IX, and
59 hCA IX-mimicking (mutated) proteins in complex with
unique inhibitors, many of which were contained in our data
set (Table 1), were obtained from the RCSB Protein Data

Bank (accessed September 2020).28 An hCA IX-mimicking
protein contains the original hCA II isoform active site
engineered by site-directed mutagenesis to represent the wild-

type hCA IX isoform by introducing relevant residue
replacements. These replacements included A65S, N67Q,
E69T, I91L, F131V, K170E, and L204A (hCA II sequence
numbering).29 Further analysis revealed that compounds in
four of the hCA IX and 30 of the hCA IX-mimicking structures
were also cocrystallized with the hCA II isoform. Thus, these
compounds provided a meaningful basis for studying different
binding modes and specific interactions associated with hCA
IX/hCA II selectivity taking into account structural features
that determine ML predictions. Superpositions of X-ray
structures were obtained using UCSF Chimera.30

3. RESULTS AND DISCUSSION
3.1. Inhibitors and Analog Series. Initially, the data set

of selective and nonselective inhibitors for ML was structurally
organized. It was found to contain 328 ASs with two or more
compounds, representing ∼70% of the 1748 inhibitors. ASs
comprised only hCA IX-selective inhibitors (48 series), only
nonselective (163), or both selective and nonselective
inhibitors (117 “mixed” series). Figure 1 shows that these
different AS categories displayed similar size distributions, with
a clear dominance of small series with less than five
compounds. Only small numbers of larger ASs comprising
up to 25 compounds were detected. Hence, there was no

Table 1. X-ray Structuresa

target
PDB
entries

unique
inhibitors

contained in
the ML data set

shared by
isoforms

shared in the
ML data set

hCA II 811 488 93 34 12
hCA IX 20 11 4 4 2
hCA IX-
mimic

94 59 15 30 10

aReported are X-ray structures of hCA-inhibitor complexes evaluated
in our analysis. For example, from the PDB, 811 structures of hCA II-
inhibitor complexes were retrieved, which contained 488 unique
inhibitors, 93 of which were contained in our data set for ML. Thirty-
four of these inhibitors were found in complex structures of all three
hCA isoforms, and 12 of these shared inhibitors were contained in our
data set.

Figure 1. Distribution of analog series. Histograms report the size distributions of ASs exclusively consisting of nonselective (red) or selective
(green) inhibitors or combining both nonselective and selective compounds (mixed series, orange). The three histograms are shown on the same
scale.
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global or category-centered bias in AS composition toward
small numbers of large series, which might limit predictive
modeling or conclusions drawn from such investigations.
However, as revealed by the presence of 117 mixed ASs, many
selective and nonselective inhibitors displayed close structural
relationships, which principally challenged the prediction of
selective inhibitors. Furthermore, there were essentially twice
as many nonselective than selective inhibitors available
(applying a moderate SI > 0.7 criterion), which reflected the
inherent difficulties in obtaining isoform-selective hCA
inhibitors, as described above. Rather than balancing the
number of compounds with different class labels (positive/
selective or negative/nonselective) for training, which generally
favors ML predictions, we preferred retaining this intrinsic
imbalance, thus attempting predictions under realistic data
conditions. Taken together, in light of the statistical and
structural characteristics of the inhibitor data set, the selectivity
prediction task was considered challenging.
3.2. Prediction of Selective Inhibitors. We then

attempted to systematically predict hCA IX-selective inhibitors
in cross validation trials. Contrary to our expectations,
generally high prediction accuracy was achieved, for both RF
and SVM models and on the basis of all performance measures,
as summarized in Figure 2. The performance of RF and SVM
classification was very similar with only little variation over
different trials. With median F1 values of ∼0.75, median BA of
>0.8, and AUROC values close to 0.9, the predictions
consistently yielded reasonable to high accuracy, as further
indicated by median MCC values of ∼0.6. We also assessed the
predictions at the level of ASs, which mirrored the structural
organization of test data. As reported in Table 2, 31 of 48 ASs
exclusively comprising selective inhibitors were consistently

correctly predicted (MPC = 100%), corresponding to 173 of
219 compounds contained in selective ASs. Moreover, 145 of
163 ASs exclusively consisting of nonselective inhibitors were
consistently correctly predicted, including 508 of 549 non-
selective inhibitors. Overall, 83% of ASs consisting of either
only selective or nonselective inhibitors were always correctly
predicted. Hence, assessing the predictions at the level of ASs
further confirmed their global accuracy.

3.3. Feature Relevance Analysis. In light of the observed
accuracy, we further assessed the predictions by exploring
structural features that were responsible for the predictions. In
ML, diagnostic approaches are still rare but essential for
rationalizing successful predictions or failures. Given the
equivalence of the results obtained for RF and SVM
classification and the consistently better predictive perform-
ance of the Tanimoto over the linear kernel, we focused the
analysis on SVM calculations, for which feature weighting
approaches were applicable (see Materials and Methods).
Accordingly, we determined ECFP4 features with positive and
negative SVM weights contributing to the correct prediction of
selective and nonselective inhibitors, respectively, and searched
for contributing features that exclusively occurred in selective
or nonselective compounds. Figure 3 shows that large numbers
of features were identified that contributed with varying
weights to positive or negative predictions and exclusively
occurred in selective and nonselective inhibitors, respectively.
As indicated by generally low ΔF values, exclusive features
typically only occurred in small subsets of compounds. Hence,
there were no distinguishing features that could be generalized,
consistent with the structural heterogeneity of selective and
nonselective compounds, as revealed by their partitioning into
many different ASs of mostly small size. Furthermore, most of
the exclusive features had absolute weights <0.10, and
comparably few features with absolute weights >0.15 were
detected. While many features contributed to meaningful SVM
predictions, the latter features largely determined correct
predictions of selective or nonselective inhibitors. Figure 4
shows the top 10 features with the largest weights that
exclusively occurred in selective inhibitors and thus made the
most important contribution to the prediction of selectivity.
These ECFP4 features defined different structural fragments
that occurred in test compounds as substructures. Notably,
these features included two distinct sulfonamide-containing

Figure 2. Prediction accuracies. Boxplots report prediction accuracy over 10 independent RF (blue) and SVM (orange) trials using different
training and test sets. From the left to the right, results are shown for the F1, BA, AUROC, and MCC measures. Boxplots show the smallest value
(lower whisker), lower quartile (lower boundary of the box), median (vertical line in the box), upper quartile (upper boundary of the box), and the
maximum value (upper whisker). Values classified as statistical outliers are represented as diamonds.

Table 2. Prediction of Analog Seriesa

compounds analog series

selective total data set 219 48
MPCselective = 100% 173 31

nonselective total data set 559 163
MPCnonselective = 100% 508 145

aReported are ASs exclusively consisting of selective and nonselective
inhibitors and their subsets that were consistently correctly predicted
(MPC = 100%).
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Figure 3. Distribution of exclusive features. The scatterplot shows the distribution of ECFP4 features that are exclusively found in nonselective
(orange) or selective (green) inhibitors. Each dot represents a unique feature. The relative frequency of occurrence of a feature in nonselective or
selective compounds (ΔFrequency; nonselective < 0, selective > 0) is plotted against the mean feature weight from SVM classification. Negative
and positive weights represent contributions to the prediction of nonselective and selective compounds, respectively. Two features with the largest
Δfrequency values and the highest weights are highlighted (red box, upper right corner).

Figure 4. Exclusive features. Shown are the top 10 features with the largest SVM weights that exclusively occurred in selective inhibitors (ordered
from upper left, top 1, to lower right, top 10). Features 209 and 212 are highlighted in Figure 3.

Figure 5. (A,B) Feature mapping. In (A), feature 209 from Figure 4 is mapped (red) on exemplary analogs from a selective AS with MPCselective =
100%. In (B), members of another selective AS with MPCselective = 100% are shown. Features with the highest SVM weights are mapped on the
analogs. For a compound from this AS, X-ray structures of complexes with hCA II and hCA IX were available.
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substructures (numbers 1590 and 5500). As discussed above,
the sulfonamide group complexing the catalytic zinc cation in
the active site is a hallmark of many potent hCA inhibitors,
which is contained in both selective and nonselective
inhibitors. Thus, the presence or absence of a sulfonamide
group alone is insufficient to distinguish between selective and
nonselective inhibitors. Rather, the way in which sulfonamide
is embedded in substructures/compounds or specific feature
combinations in which it occurs might contribute to the
prediction of selective inhibitors. Furthermore, the two top
ranked features in Figure 4 were features 209 and 212, which
delineated overlapping substructures and had the largest
weights and by far the highest ΔF value among positive
features, as shown in Figure 3 (where features 209 and 212 are
highlighted). Thus, these two features accounting for similar
structural fragments made overall the most important
contributions to the predictions of selective inhibitors.
3.4. Feature Mapping. The keyed design of the feature

fingerprint with 1:1 bit-to-feature correspondence made it
possible to map key features to structures of test compounds.
Therefore, we searched for ASs exclusively comprising selective
inhibitors that were consistently correctly predicted and
contained features 209 and/or 212. Several ASs were
identified. Figure 5A shows an exemplary series of
sulfocoumarin derivatives in which both features were present
and formed a substructure covering most of the sulfocoumarin
core. These compounds are potent and selective inhibitors of
the tumor-associated hCA IX and hCA XII isoforms.31 Of
note, coumarin and sulfocoumarin derivatives can act by
complex mechanisms. These compounds are known to
undergo hydrolysis upon binding to the catalytic site of
hCAs. However, prior to hydrolysis, they bind within the hCA
active site similarly to phenols, i.e., by anchoring to the zinc-
bound water molecule/hydroxide ion,32 as confirmed by an X-
ray structure of 2-thioxocoumarine in complex with hCA II.33

This recognition mechanism was intentionally included in our
ML analysis, yielding promising results.

In Figure 5B, another selective AS is shown in which features
making the largest contributions to consistently correct
predictions were mapped on individual analogs containing
them. All of these features delineated an extended terminal
pyridyl or substituted phenyl ring systems distant from the
sulfonamide moiety. Thus, in both cases, key features for
correct predictions defined coherent substructures of corre-
sponding regions of analogs, which provided a basis of
interpreting predictions.

3.5. Relating Important Features to Selectivity.
Feature weighting and mapping identified a number of features
that determined accurate SVM predictions of hCA IX-selective
inhibitors. However, although these features made major
contributions to ML predictions, it could not be concluded
that they were implicated in or responsible for selectivity.
Structural features determining predictions may or may not be
of biological relevance, the assessment of which goes beyond
ML analysis. Hence, the question whether substructures
defined by the most important features we identified were
indeed implicated in inhibitor selectivity required additional
analysis.

3.6. Structure-Based Analysis. To address this question,
we searched for selective inhibitors for which X-ray structures
of complexes with hCA II and hCA IX or hCA IX-mimics were
available. Such structures provided a basis for viewing mapped
key features in light of enzyme-inhibitor interactions and
exploring potential differences implicated in selectivity. Among
the large number of publicly available hCA isoform X-ray
structures (Table 1), a limited number of suitable hCA II/IX
structures with selective inhibitors we predicted were identified
and compared. A particularly instructive example was obtained
by comparing X-ray structures of hCA II and hCA IX-
mimicking protein in complex with the hCA IX-selective
inhibitor SLC-0111 that belongs to the series in Figure 5B
(PDB entries 3N4B and 5JN3, respectively). The binding
mode of SLC-0111 in the hCA II and hCA IX-mimic structures
is shown in Figure 6A and B, respectively. As observed for all
members of the corresponding AS, the feature with the highest

Figure 6. Structure-based analysis. X-ray structures of SLC-0111 in complex with (A) hCA II and (B) hCA IX-mimic forms. (upper section) The
catalytic zinc cation interacting with the sulfonamide moiety of the inhibitor is depicted as a sphere; (lower section) an interaction map is shown for
the inhibitor and amino acid residues lining the active site (green, lipophilic residues; sky blue, polar residues; red, charged residues).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c06153
ACS Omega 2021, 6, 4080−4089

4086

https://pubs.acs.org/doi/10.1021/acsomega.0c06153?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06153?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06153?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06153?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c06153?ref=pdf


positive SVM weight mapped to the terminal ring (in this case,
a 4-fluorophenyl moiety) distant from the sulfonamide group
complexing the catalytic zinc ion. In both complexes, the
benzenesulfonamide fragment position was superimposable
and interacted with the catalytic zinc ion; in the hCA II
structure, the N,N′-ureic portion of the ligand adopted a less
stable cis/trans conformation with the 4-fluorophenyl moiety
that interacted with residue P201. This orientation was
determined by the steric hindrance between the 4-fluorophenyl
moiety and the phenyl ring of the F130 side chain that
determined the observed orientation of the compound. The
phenylalanine residue was not conserved in hCA IX where it
was replaced by a smaller valine residue (V262). Figure 7
shows the corresponding sequence alignment. This substitu-
tion led to the absence of steric hindrance between the protein
and the 4-fluorophenyl moiety of the ligand. As a consequence,
the inhibitor was able to maintain a more stable trans/trans
N,N′-ureic conformation with a strong lipophilic interaction
between 4-fluorophenyl and V262. By contrast, suboptimal
interactions in this region of hCA II resulted in a loss of
potency of the inhibitor compared to hCA IX and hence in
selectivity of the compound for hCA IX over hCA II. The
importance of inhibitor interactions with residue 131 in hCA
isoforms has also been pointed out in the literature,34

providing corroborating evidence. These considerations were
equally applicable to most of the other analogs comprising the
hCA IX-selective series in Figure 5B, which was consistently
correctly predicted. In all instances, features with the highest
positive weights determining the predictions were mapped to
the corresponding ring structures, which were implicated in
selectivity-determining interactions with hCA isoforms. There-
fore, in this case, features that determined ML predictions were
directly implicated in critical enzyme-inhibitor interactions

determining compound selectivity and thus biologically
relevant.

3.7. Conclusions. Predicting target-selective compounds
typically represents a challenging task. In this work, we have
attempted to predict inhibitors with selectivity for the tumor-
associated hCA IX isoform over the ubiquitous hCA II isoform
via ML. Surprisingly accurate and robust predictions were
obtained using RF and SVM models, including many selective
or nonselective ASs that were consistently correctly predicted,
lending credence to the computational approach. These rather
encouraging findings prompted us to further analyze the
predictions. SVM feature weight analysis revealed numerous
features that exclusively occurred in selective or nonselective
compounds and contributed to positive and negative
predictions. Highly weighted features were found to map to
corresponding regions in ASs, hence rationalizing origins of
successful predictions. For selectivity analysis and compound
design, signature features of compound selectivity are of prime
interest. However, there is no guarantee that features that make
large contributions to or determine positive ML predictions are
indeed biologically relevant. Therefore, we have gone a step
further and evaluated important features on the basis of X-ray
structures of complexes formed by the hCA IX and hCA II
isoforms and selective inhibitors. For an exemplary selective
AS, comparisons of corresponding X-ray structures revealed
that features determining correct predictions defined sub-
structures of inhibitors that were involved in selectivity-
conferring interactions, thus establishing proof-of-principle.
Demonstrating biological relevance of distinguishing features
identified by ML is far from being routine, and to our
knowledge, this may be one of the first studies doing so. Our
findings also indicate that the ML models reported herein
should have potential for practical applications in the search for

Figure 7. Sequence alignment of hCA II and hCA IX. Shown is the alignment of the hCA II (CAH2_HUMAN) and hCA IX (CAH9_HUMAN)
amino acid sequences taken from UniProt.35 Binding site residues are highlighted in yellow, and nonconserved residues participating in the
formation of the binding site are shown in bold. Identical residues are indicated with “*”, while conservative residue replacements are marked with
“:” and “.”.
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new hCA IX-selective inhibitors. Therefore, as a part of our
study, trained RF and SVM models are made available upon
request.
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(27) Rodríguez-Peŕez, R.; Vogt, M.; Bajorath, J. Support Vector
Machine Classification and Regression Prioritize Different Structural
Features for Binary Compound Activity and Potency Value
Prediction. ACS Omega 2017, 2, 6371−6379.
(28) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
Bank. Nucleic Acids Res. 2000, 28, 235−242.
(29) Pinard, M. A.; Boone, C. D.; Rife, B. D.; Supuran, C. T.;
McKenna, R. Structural Study of Interaction between Brinzolamide
and Dorzolamide Inhibition of Human Carbonic Anhydrases. Bioorg.
Med. Chem. 2013, 21, 7210−7215.
(30) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.;
Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera-a
Visualization System for Exploratory Research and Analysis. J.
Comput. Chem. 2004, 25, 1605−1612.
(31) Grandane, A.; Tanc, M.; Zalubovskis, R.; Supuran, C. T. 6-
Triazolyl-Substituted Sulfocoumarins Are Potent, Selective Inhibitors
of the Tumor-Associated Carbonic Anhydrases IX and XII. Bioorg.
Med. Chem. Lett. 2014, 24, 1256−1260.
(32) Maresca, A.; Temperini, C.; Pochet, L.; Masereel, B.;
Scozzafava, A.; Supuran, C. T. Deciphering the Mechanism of
Carbonic Anhydrase Inhibition with Coumarins and Thiocoumarins.
J. Med. Chem. 2010, 53, 335−344.
(33) Ferraroni, M.; Carta, F.; Scozzafava, A.; Supuran, C. T.
Thioxocoumarins Show an Alternative Carbonic Anhydrase Inhibition
Mechanism Compared to Coumarins. J. Med. Chem. 2016, 59, 462−
473.
(34) Lomelino, C. L.; Mahon, B. P.; McKenna, R.; Carta, F.;
Supuran, C. T. Kinetic and X-Ray Crystallographic Investigations on
Carbonic Anhydrase Isoforms I, II, IX and XII of a Thioureido Analog
of SLC-0111. Bioorg. Med. Chem. 2016, 24, 976−981.
(35) UniProt Consortium. Reorganizing the Protein Space at the
Universal Protein Resource (UniProt). Nucleic Acids Res. 2012, 40,
D71−D75.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c06153
ACS Omega 2021, 6, 4080−4089

4089

https://dx.doi.org/10.1021/acs.jcim.5b00175
https://dx.doi.org/10.1021/acs.jcim.5b00175
https://dx.doi.org/10.1021/acsomega.7b01079
https://dx.doi.org/10.1021/acsomega.7b01079
https://dx.doi.org/10.1021/acsomega.7b01079
https://dx.doi.org/10.1021/acsomega.7b01079
https://dx.doi.org/10.1093/nar/28.1.235
https://dx.doi.org/10.1093/nar/28.1.235
https://dx.doi.org/10.1016/j.bmc.2013.08.033
https://dx.doi.org/10.1016/j.bmc.2013.08.033
https://dx.doi.org/10.1002/jcc.20084
https://dx.doi.org/10.1002/jcc.20084
https://dx.doi.org/10.1016/j.bmcl.2014.01.076
https://dx.doi.org/10.1016/j.bmcl.2014.01.076
https://dx.doi.org/10.1016/j.bmcl.2014.01.076
https://dx.doi.org/10.1021/jm901287j
https://dx.doi.org/10.1021/jm901287j
https://dx.doi.org/10.1021/acs.jmedchem.5b01720
https://dx.doi.org/10.1021/acs.jmedchem.5b01720
https://dx.doi.org/10.1016/j.bmc.2016.01.019
https://dx.doi.org/10.1016/j.bmc.2016.01.019
https://dx.doi.org/10.1016/j.bmc.2016.01.019
https://dx.doi.org/10.1093/nar/gkr981
https://dx.doi.org/10.1093/nar/gkr981
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c06153?ref=pdf

