2,775 research outputs found

    Phase growth in bistable systems with impurities

    Full text link
    A system of coupled chaotic bistable maps on a lattice with randomly distributed impurities is investigated as a model for studying the phenomenon of phase growth in nonuniform media. The statistical properties of the system are characterized by means of the average size of spatial domains of equivalent spin variables that define the phases. It is found that the rate at which phase domains grow becomes smaller when impurities are present and that the average size of the resulting domains in the inhomogeneous state of the system decreases when the density of impurities is increased. The phase diagram showing regions where homogeneous, heterogeneous, and chessboard patterns occur on the space of parameters of the system is obtained. A critical boundary that separates the regime of slow growth of domains from the regime of fast growth in the heterogeneous region of the phase diagram is calculated. The transition between these two growth regimes is explained in terms of the stability properties of the local phase configurations. Our results show that the inclusion of spatial inhomogeneities can be used as a control mechanism for the size and growth velocity of phase domains forming in spatiotemporal systems.Comment: 7 pages, 12 figure

    Phase ordering induced by defects in chaotic bistable media

    Full text link
    The phase ordering dynamics of coupled chaotic bistable maps on lattices with defects is investigated. The statistical properties of the system are characterized by means of the average normalized size of spatial domains of equivalent spin variables that define the phases. It is found that spatial defects can induce the formation of domains in bistable spatiotemporal systems. The minimum distance between defects acts as parameter for a transition from a homogeneous state to a heterogeneous regime where two phases coexist The critical exponent of this transition also exhibits a transition when the coupling is increased, indicating the presence of a new class of domain where both phases coexist forming a chessboard pattern.Comment: 3 pages, 3 figures, Accepted in European Physics Journa

    Emergence and persistence of communities in coevolutionary networks

    Full text link
    We investigate the emergence and persistence of communities through a recently proposed mechanism of adaptive rewiring in coevolutionary networks. We characterize the topological structures arising in a coevolutionary network subject to an adaptive rewiring process and a node dynamics given by a simple voterlike rule. We find that, for some values of the parameters describing the adaptive rewiring process, a community structure emerges on a connected network. We show that the emergence of communities is associated to a decrease in the number of active links in the system, i.e. links that connect two nodes in different states. The lifetime of the community structure state scales exponentially with the size of the system. Additionally, we find that a small noise in the node dynamics can sustain a diversity of states and a community structure in time in a finite size system. Thus, large system size and/or local noise can explain the persistence of communities and diversity in many real systems.Comment: 6 pages, 5 figures, Accepted in EPL (2014

    A decentralized scalable approach to voltage control of DC islanded microgrids

    Get PDF
    We propose a new decentralized control scheme for DC Islanded microGrids (ImGs) composed by several Distributed Generation Units (DGUs) with a general interconnection topology. Each local controller regulates to a reference value the voltage of the Point of Common Coupling (PCC) of the corresponding DGU. Notably, off-line control design is conducted in a Plug-and-Play (PnP) fashion meaning that (i) the possibility of adding/removing a DGU without spoiling stability of the overall ImG is checked through an optimization problem; (ii) when a DGU is plugged in or out at most neighbouring DGUs have to update their controllers and (iii) the synthesis of a local controller uses only information on the corresponding DGU and lines connected to it. This guarantee total scalability of control synthesis as the ImG size grows or DGU gets replaced. Yes, under mild approximations of line dynamics, we formally guarantee stability of the overall closed-loop ImG. The performance of the proposed controllers is analyzed simulating different scenarios in PSCAD.Comment: arXiv admin note: text overlap with arXiv:1405.242

    Plug-and-play and coordinated control for bus-connected AC islanded microgrids

    Full text link
    This paper presents a distributed control architecture for voltage and frequency stabilization in AC islanded microgrids. In the primary control layer, each generation unit is equipped with a local controller acting on the corresponding voltage-source converter. Following the plug-and-play design approach previously proposed by some of the authors, whenever the addition/removal of a distributed generation unit is required, feasibility of the operation is automatically checked by designing local controllers through convex optimization. The update of the voltage-control layer, when units plug -in/-out, is therefore automatized and stability of the microgrid is always preserved. Moreover, local control design is based only on the knowledge of parameters of power lines and it does not require to store a global microgrid model. In this work, we focus on bus-connected microgrid topologies and enhance the primary plug-and-play layer with local virtual impedance loops and secondary coordinated controllers ensuring bus voltage tracking and reactive power sharing. In particular, the secondary control architecture is distributed, hence mirroring the modularity of the primary control layer. We validate primary and secondary controllers by performing experiments with balanced, unbalanced and nonlinear loads, on a setup composed of three bus-connected distributed generation units. Most importantly, the stability of the microgrid after the addition/removal of distributed generation units is assessed. Overall, the experimental results show the feasibility of the proposed modular control design framework, where generation units can be added/removed on the fly, thus enabling the deployment of virtual power plants that can be resized over time

    An alternative strategy for cloning minor permeases in Aspergillus nidulans

    Get PDF
    The uapC gene was cloned by complementation of the cryosensitive phenotype of uapA mutants following the instant gene bank method. The analysis of the transformants is presented and a strategy to clone other transport related genes is proposed

    Membrane-less bioelectrochemical reactor for the treatment of groundwater contaminated by toluene and trichloroethene

    Get PDF
    To address the ever-growing environmental problem of groundwater contamination, microbial electrochemical technologies (METs) are being studied as promising substitutes for traditional remediation techniques. Among their many advantages, they possess the capability of providing a virtually inexhaustible electron acceptor (or donor) directly in the aquifer without addition of air, oxygen or other chemicals. In this way, they can promote microbially-driven oxidation and/or reduction of contaminants in-situ, in a more sustainable and cost-effective way
    • …
    corecore