5 research outputs found

    Reconstruction of Functional Connectivity from Multielectrode Recordings and Calcium Imaging

    No full text
    In the last two decades, increasing research efforts in neuroscience have been focused on determining both structural and functional connectivity of brain circuits, with the main goal of relating the wiring diagram of neuronal systems to their emerging properties, from the microscale to the macroscale. While combining multisite parallel recordings with structural circuits' reconstruction in vivo is still very challenging, the reductionist in vitro approach based on neuronal cultures offers lower technical difficulties and is much more stable under control conditions. In this chapter, we present different approaches to infer the connectivity of cultured neuronal networks using multielectrode array or calcium imaging recordings. We first formally introduce the used methods, and then we will describe into details how those methods were applied in case studies. Since multielectrode array and calcium imaging recordings provide distinct and complementary spatiotemporal features of neuronal activity, in this chapter we present the strategies implemented with the two different methodologies in distinct sections.In the last two decades, increasing research efforts in neuroscience have been focused on determining both structural and functional connectivity of brain circuits, with the main goal of relating the wiring diagram of neuronal systems to their emerging properties, from the microscale to the macroscale. While combining multisite parallel recordings with structural circuits\u2019 reconstruction in vivo is still very challenging, the reductionist in vitro approach based on neuronal cultures offers lower technical difficulties and is much more stable under control conditions. In this chapter, we present different approaches to infer the connectivity of cultured neuronal networks using multielectrode array or calcium imaging recordings. We first formally introduce the used methods, and then we will describe into details how those methods were applied in case studies. Since multielectrode array and calcium imaging recordings provide distinct and complementary spatiotemporal features of neuronal activity, in this chapter we present the strategies implemented with the two different methodologies in distinct sections

    Microfluidics for Neuronal Imaging

    No full text
    In neurobiology studies, the use of well-controllable microenvironments that can actively interact with biological samples is becoming increasingly popular. Microfluidic systems due to their precise micron-size dimensions are becoming the gold standard for manipulating small-model organisms in vivo, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster as well as for assembling and interacting with neuronal cell cultures in vitro. The reproducible microenvironment, the automation of time-consuming protocols, and the low manufacturing cost of microfluidic chips offer unique experimental capabilities and a large amount of high-quality data to the neurobiologist over traditional methods. This chapter highlights a certain aspect of microfluidic technology that facilitates the study of neuronal physiology and function through imaging
    corecore