60 research outputs found
Declarative Choreographies and Liveness
Part 1: Full PapersInternational audienceWe provide the first formal model for declarative choreographies, which is able to express general omega-regular liveness properties. We use the Dynamic Condition Response (DCR) graphs notation for both choreographies and end-points. We define end-point projection as a restriction of DCR graphs and derive the condition for end-point projectability from the causal relationships of the graph. We illustrate the results with a running example of a Buyer-Seller-Shipper protocol. All the examples are available for simulation in the online DCR workbench at http://dcr.tools/forte19
Event structures for the reversible early internal pi-calculus
The pi-calculus is a widely used process calculus, which models com-munications between processes and allows the passing of communication links.Various operational semantics of the pi-calculus have been proposed, which canbe classified according to whether transitions are unlabelled (so-called reductions)or labelled. With labelled transitions, we can distinguish early and late semantics.The early version allows a process to receive names it already knows from the en-vironment, while the late semantics and reduction semantics do not. All existingreversible versions of the pi-calculus use reduction or late semantics, despite theearly semantics of the (forward-only) pi-calculus being more widely used than thelate. We define piIH, the first reversible early pi-calculus, and give it a denotationalsemantics in terms of reversible bundle event structures. The new calculus is a re-versible form of the internal pi-calculus, which is a subset of the pi-calculus whereevery link sent by an output is private, yielding greater symmetry between inputsand outputs
The (cost-)effectiveness of a lifestyle physical activity intervention in addition to a work style intervention on the recovery from neck and upper limb symptoms in computer workers
BACKGROUND: Neck and upper limb symptoms are frequently reported by computer workers. Work style interventions are most commonly used to reduce work-related neck and upper limb symptoms but lifestyle physical activity interventions are becoming more popular to enhance workers health and reduce work-related symptoms. A combined approach targeting work style and lifestyle physical activity seems promising, but little is known on the effectiveness of such combined interventions. METHODS/DESIGN: The RSI@Work study is a randomised controlled trial that aims to assess the added value of a lifestyle physical activity intervention in addition to a work style intervention to reduce neck and upper limb symptoms in computer workers. Computer workers from seven Dutch companies with frequent or long-term neck and upper limb symptoms in the preceding six months and/or the last two weeks are randomised into three groups: (1) work style group, (2) work style and physical activity group, or (3) control group. The work style intervention consists of six group meetings in a six month period that take place at the workplace, during work time, and under the supervision of a specially trained counsellor. The goal of this intervention is to stimulate workplace adjustment and to improve body posture, the number and quality of breaks and coping behaviour with regard to high work demands. In the combined (work style and physical activity) intervention the additional goal is to increase moderate to heavy physical activity. The control group receives usual care. Primary outcome measures are degree of recovery, pain intensity, disability, number of days with neck and upper limb symptoms, and number of months without neck and upper limb symptoms. Outcome measures will be assessed at baseline and six and 12 months after randomisation. Cost-effectiveness of the group meetings will be assessed using an employer's perspective. DISCUSSION: This study will be one of the first to assess the added value of a lifestyle physical activity intervention in addition to a work style intervention in reducing neck and upper limb symptoms of computer workers. The results of the study are expected in 2007
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
The serologically defined colon cancer antigen-3 (SDCCAG3) is involved in the regulation of ciliogenesis
A primary cilium is present on most eukaryotic cells and represents a specialized organelle dedicated to signal transduction and mechanosensing. Defects in cilia function are the cause for several human diseases called ciliopathies. The serologically defined colon cancer antigen-3 (SDCCAG3) is a recently described novel endosomal protein mainly localized at early and recycling endosomes and interacting with several components of membrane trafficking pathways. Here we describe localization of SDCCAG3 to the basal body of primary cilia. Furthermore, we demonstrate that decreased expression levels of SDCCAG3 correlate with decreased ciliary length and a reduced percentage of ciliated cells. We show that SDCCAG3 interacts with the intraflagellar transport protein 88 (IFT88), a crucial component of ciliogenesis and intraciliary transport. Mapping experiments revealed that the N-terminus of SDCCAG3 mediates this interaction by binding to a region within IFT88 comprising several tetratricopeptide (TRP) repeats. Finally, we demonstrate that SDCCAG3 is important for ciliary localization of the membrane protein Polycystin-2, a protein playing an important role in the formation of polycystic kidney disease, but not for Rab8 another ciliary protein. Together these data suggest a novel role for SDCCAG3 in ciliogenesis and in localization of cargo to primary cilia
Optical imaging of the peri-tumoral inflammatory response in breast cancer
<p>Abstract</p> <p>Purpose</p> <p>Peri-tumoral inflammation is a common tumor response that plays a central role in tumor invasion and metastasis, and inflammatory cell recruitment is essential to this process. The purpose of this study was to determine whether injected fluorescently-labeled monocytes accumulate within murine breast tumors and are visible with optical imaging.</p> <p>Materials and methods</p> <p>Murine monocytes were labeled with the fluorescent dye DiD and subsequently injected intravenously into 6 transgenic MMTV-PymT tumor-bearing mice and 6 FVB/n control mice without tumors. Optical imaging (OI) was performed before and after cell injection. Ratios of post-injection to pre-injection fluorescent signal intensity of the tumors (MMTV-PymT mice) and mammary tissue (FVB/n controls) were calculated and statistically compared.</p> <p>Results</p> <p>MMTV-PymT breast tumors had an average post/pre signal intensity ratio of 1.8+/- 0.2 (range 1.1-2.7). Control mammary tissue had an average post/pre signal intensity ratio of 1.1 +/- 0.1 (range, 0.4 to 1.4). The p-value for the difference between the ratios was less than 0.05. Confocal fluorescence microscopy confirmed the presence of DiD-labeled cells within the breast tumors.</p> <p>Conclusion</p> <p>Murine monocytes accumulate at the site of breast cancer development in this transgenic model, providing evidence that peri-tumoral inflammatory cell recruitment can be evaluated non-invasively using optical imaging.</p
Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction
Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS), which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered
- âŚ