131 research outputs found

    Is Bagging Effective in the Classification of Small-Sample Genomic and Proteomic Data?

    Get PDF
    There has been considerable interest recently in the application of bagging in the classification of both gene-expression data and protein-abundance mass spectrometry data. The approach is often justified by the improvement it produces on the performance of unstable, overfitting classification rules under small-sample situations. However, the question of real practical interest is whether the ensemble scheme will improve performance of those classifiers sufficiently to beat the performance of single stable, nonoverfitting classifiers, in the case of small-sample genomic and proteomic data sets. To investigate that question, we conducted a detailed empirical study, using publicly-available data sets from published genomic and proteomic studies. We observed that, under t-test and RELIEF filter-based feature selection, bagging generally does a good job of improving the performance of unstable, overfitting classifiers, such as CART decision trees and neural networks, but that improvement was not sufficient to beat the performance of single stable, nonoverfitting classifiers, such as diagonal and plain linear discriminant analysis, or 3-nearest neighbors. Furthermore, as expected, the ensemble method did not improve the performance of these classifiers significantly. Representative experimental results are presented and discussed in this work

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing

    A Novel High-Throughput Vaccinia Virus Neutralization Assay and Preexisting Immunity in Populations from Different Geographic Regions in China

    Get PDF
    Background: Pre-existing immunity to Vaccinia Tian Tan virus (VTT) resulting from a large vaccination campaign against smallpox prior to the early 1980s in China, has been a major issue for application of VTT-vector based vaccines. It is essential to establish a sensitive and high-throughput neutralization assay to understand the epidemiology of Vaccinia-specific immunity in current populations in China. Methodology/Principal Findings: A new anti-Vaccinia virus (VACV) neutralization assay that used the attenuated replication-competent VTT carrying the firefly luciferase gene of Photinus pyralis (rTV-Fluc) was established and standardized for critical parameters that included the choice of cell line, viral infection dose, and the infection time. The current study evaluated the maintenance of virus-specific immunity after smallpox vaccination by conducting a non-randomized, crosssectional analysis of antiviral antibody-mediated immune responses in volunteers examined 30–55 years after vaccination. The rTV-Fluc neutralization assay was able to detect neutralizing antibodies (NAbs) against Vaccinia virus without the ability to differentiate strains of Vaccinia virus. We showed that the neutralizing titers measured by our assay were similar to those obtained by the traditional plaque reduction neutralization test (PRNT). Using this assay, we found a low prevalence of NAb to VTT (7.6%) in individuals born before 1980 from Beijing and Anhui provinces in China, and when present, anti-VTT NAb titers were low. No NAbs were detected in all 222 samples from individuals born after 1980. There was no significan

    IL-4 as a Repurposed Biological Drug for Myocardial Infarction through Augmentation of Reparative Cardiac Macrophages: Proof-of-Concept Data in Mice.

    Get PDF
    Recent research has shown that reparative (alternatively activated or M2) macrophages play a role in repair of damaged tissues, including the infarcted hearts. Administration of IL-4 is known to augment M2 macrophages. This translational study thus aimed to investigate whether IL-4 administration is useful for the treatment of myocardial infarction. Long-acting IL-4 complex (IL-4c; recombinant IL-4 mixed with anti-IL-4 monoclonal antibody as a stabilizer) was administered after coronary artery ligation in mice. It was observed that IL-4c administration increased accumulation of CD206+F4/80+ M2-like macrophages predominantly in the injured myocardium, compared to the control. Sorted cardiac M2-like macrophages highly expressed wide-ranging tissue repair-related genes. Indeed, IL-4c administration enhanced cardiac function in association with reduced infarct size and enhanced tissue repair (strengthened connective tissue formation, improved microvascular formation and attenuated cardiomyocyte hypertrophy). Experiments using Trib1 -/- mice that had a depleted ability to develop M2 macrophages and other in-vitro studies supported that these IL-4-mediated effects were induced via M2-like macrophages. On the other hand, when administered at Day 28 post-MI, the effects of IL-4c were diminished, suggesting a time-frame for IL-4 treatment to be effective. These data represent proof-of-concept of efficacy of IL-4 treatment for acute myocardial infarction, encouraging its further development.This project was funded by the Heart Research UK Translational Research Grant (RG2653/15/16), British Heart Foundation Programme Grant (RG/15/31236), and Queen Mary Innovation Proof of Concept Grant (2015). The National Institute for Health Researchfunded Barts Cardiovascular Biomedical Research Unit also supported this project.This project was funded by the Heart Research UK Translational Research Grant (RG2653/15/16), British Heart Foundation Programme Grant (RG/15/31236), and Queen Mary Innovation Proof of Concept Grant (2015). The National Institute for Health Research-funded Barts Cardiovascular Biomedical Research Unit also supported this project
    corecore