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Application of ensemble classification rules in genomics and proteomics has become increasingly common. However, the problem
of error estimation for these classification rules, particularly for bagging under the small-sample settings prevalent in genomics
and proteomics, is not well understood. Breiman proposed the “out-of-bag” method for estimating statistics of bagged classifiers,
which was subsequently applied by other authors to estimate the classification error. In this paper, we give an explicit definition
of the out-of-bag estimator that is intended to remove estimator bias, by formulating carefully how the error count is normalized.
We also report the results of an extensive simulation study of bagging of common classification rules, including LDA, 3NN, and
CART, applied on both synthetic and real patient data, corresponding to the use of common error estimators such as resubstitution,
leave-one-out, cross-validation, basic bootstrap, bootstrap 632, bootstrap 632 plus, bolstering, semi-bolstering, in addition to the
out-of-bag estimator. The results from the numerical experiments indicated that the performance of the out-of-bag estimator is
very similar to that of leave-one-out; in particular, the out-of-bag estimator is slightly pessimistically biased. The performance of
the other estimators is consistent with their performance with the corresponding single classifiers, as reported in other studies.

1. Introduction

Ensemble classification methods combine the decision of
multiple classifiers designed on randomly perturbed versions
of the available data [1–5]. The most popular version of
this scheme is known as bootstrap aggregating, or “bagging”
[4, 5] where the ensemble classifier corresponds to a majority
vote among classifiers designed on bootstrap samples [6]
from the available training data.

There has been considerable interest recently in the
application of bagging in the classification of both gene
expression data [7–10] and protein-abundance mass spec-
trometry data [11–16]. The popularity of bagging is based
on the expectation that combining the decision of several
classifiers will regularize and improve the performance of
unstable, overfitting classification rules (the so-called “weak
learners”). In a related study [17], the authors have inves-
tigated this claim, in the context of small-sample genomics
and proteomics data. On the other hand, a different issue
is the performance of error estimators for bagged classifiers.
Accurate error estimation is a critical issue in Genomics,
as it decisively impacts the scientific validity of hypotheses

derived from application of pattern recognition methods to
biomedical data [18–20]. On the topic of error estimation,
Breiman proposed a general method, which he called “out-
of-bag”, for estimating statistics of bagged classifiers [21],
and, subsequently, other authors applied it to the estimation
of the classification error [22, 23]. In this paper, we give
an explicit definition of the out-of-bag estimator that
is intended to remove estimator bias, which is done by
formulating carefully how the error count is normalized. The
performance of out-of-bag estimators with general bagged
classification rules is not in fact well understood, especially
in connection with bagging ensemble classifiers derived from
classification rules other than decision trees (which was
Breiman’s primary interest). In addition, to our knowledge,
no studies have attempted to assess the performance of
error estimators for bagged classifiers in the context of
Genomics data, particularly in the prevalent small-sample
setting usually found in these applications.

To investigate these issues, we conducted an exten-
sive simulation study of bagging of common classifi-
cation rules, including LDA, 3NN, and CART, applied
on both synthetic and real patient data, corresponding
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Figure 1: Comparison of out-of-bag and leave-one-out for different Gaussian models over the number of samples, for dimensionality p = 2.
(a) Sample mean. (b) Sample standard deviation.

to the use of common error estimators such as resub-
stitution, leave-one-out, cross-validation, basic bootstrap,
bootstrap 632, bootstrap 632 plus, bolstering, semibol-
stering, in addition to the out-of-bag estimator itself. We
present here selected representative results; the full set of
results can be found on the companion website, at http://
gsp.tamu.edu/Publications/supplementary/oob. The results
from the numerical experiments indicated that the perfor-
mance of the out-of-bag error estimator is very similar to
that of leave-one-out; in particular, the out-of-bag estimator
is slightly pessimistically biased. The performance of the
other estimators is for the most part consistent with their
performance with the corresponding single classification
rules assessed in other studies, with the best performance
being provided by the bolstered error estimators, in terms of
root mean square error.

This paper is organized as follows. In Section 2, we review
briefly the definition of bagged ensemble classification rules.
In Section 3, we describe the error estimators considered in
this study. In Section 4, we present the results of a large
simulation study on the performance of error estimators
with bagged classification rules. Finally, Section 5 provides
concluding remarks.

2. Bagged Classification Rules

In pattern recognition, classification is the process of assign-
ing a group label to an object, based on information available

about it in the form of a data vector called a feature vector.
Suppose we have a binary classification problem with feature
vector X in a feature space V and label Y ∈ {0, 1}. A classifier
is a function ψ : V → {0, 1}. The stochastic properties of the
classification problem are completely determined by the joint
feature-label distribution F of the pair (X ,Y). F is, in practice,
rarely known. Classification is implemented empirically, by
means of the design of a classifier based on a finite set of i.i.d.
samples drawn from F:

Sn = {(X1,Y1), (X2,Y2), . . . , (Xn,Yn)}. (1)

For a fixed n, a classification rule would be a function that
maps the sample data to a classifier:

Ψn : [V × {0, 1}]n −→ {0, 1}V . (2)

For a given training set Sn, we have a designed classifier ψn =
Ψn(Sn). The classification error is the chance of incorrectly
classifying a future sample (X ,Y) given the training sample
set Sn:

εn = P
(
ψn(X) /=Y | Sn

)
. (3)

It is clear that εn is random as it depends on Sn. The expected
error taken over the randomness of Sn is called expected
classification error E[εn] and this is a deterministic quantity
which is a function of classification rule and the joint feature-
label distribution.
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Figure 2: Bias, variance (standard deviation), and RMS of as a function of the Bayes error, for the synthetic data, sample size n = 20, and
dimensionality p = 2, with different base classification rules.

The number of training samples n is, in practice, always
limited. Much effort is spent on exploiting and reusing
the samples as much as possible. Randomization is one
resampling technique in which multiple bootstrap sets S∗k
are created by randomly drawing points from Sn, either
with or without replacement, corresponding to a resampling
distribution F∗ on the training data. The cardinality k of
S∗k can be smaller, equal to or larger than n, depending on
the application of interest. In a bootstrap set, a sample point
can appear multiple times or not at all. In bagging, different
choices of resampling distribution and k lead to variants,
but the most common one is uniform resampling with
k = n.

An ensemble classifier is acquired based on majority
voting among component classifiers. Each component of the
ensemble is built up on a bootstrap set using the original
classification rule Ψn. The bagged classification is defined as

ψR
n (x) = ΨR

n(Sn)(x) =

⎧
⎪⎨

⎪⎩

1, E
[
Ψn

(
S∗k
)

(x) | Sn
]
≥ 1

2
,

0, otherwise,
(4)

where the expectation is taken with respect to the random
mechanism F∗, fixed at the observed value of Sn. Bagging is a
version of ensemble classifier, in which the expectation in (4)
is approximated by Monte-Carlo sampling:

ψB
n,m(x) = ΨR

n(Sn)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1,
1
m

m∑

j=1

ψ
∗( j)
n (x) ≥ 1

2
,

0, otherwise,

(5)

where the classifiers ψ
∗( j)
n are designed by the original

classification rule Ψn on bootstrap samples S
∗( j)
n , for j =

1, . . . ,m, for large enough m. How large m should be is
an important topic of bagging so that it is computationally
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Figure 3: Empirical deviation distribution (a), box plots (b), and RMS as a function of sample size (c), for synthetic Gaussian model with
Bayes error = 0.05, sample size n = 20, and dimensionality p = 2, with different base classification rules.

efficient and the Monte Carlo approximation is accurate
enough. In this paper, we chose m = 51 according to
the recommendation from Breiman [21] and from our
observations on the convergence of mean error of bagged
classifiers in our previous study [17]. It is important to
select an odd m to avoid the issue of tie breaking in the
majority vote. Experimental results in our previous study
[17] showed that increasing m beyond m = 51 leads to
negligible differences in performance.

3. Error Estimation

3.1. Classical Methods. Data in practice are often limited, and
the training sample Sn has to be used for both designing the
classifier ψn and estimating the true error εn. An obvious
method to estimate εn is to use Sn itself as the test set, which

leads often, but not always, to optimistic bias. This is called
the resubstitution estimator:

ε̂resub = 1
n

n∑

i=1

∣
∣yi −Ψn(Sn)(xi)

∣
∣. (6)

In k-fold cross-validation, Sn is partitioned into k folds S(i), for
i = 1, . . . , k (for simplicity, we assume that k divides n), each
fold is left out of the design process and used as a testing set,
and the estimate is the overall proportion of error committed
on all folds [24]:

ε̂cvk = 1
n

k∑

i=1

n/k∑

j=1

∣
∣∣y(i)

j −Ψn
(
Sn \ S(i)

)(
x(i)
j

)∣∣∣, (7)

where (x(i)
j , y(i)

j ) is a sample in the ith fold. The process
may be repeated, where several cross-validated estimates are
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Figure 4: Empirical deviation distribution (a), box plots (b), and RMS as a function of sample size (c), for synthetic Gaussian model with
Bayes error = 0.15, sample size n = 20, and dimensionality p = 2, with different base classification rules.

computed, using different partitions of the data into folds,
and the results averaged. In leave-one-out estimation, a single
observation is left out each time, which corresponds to n-
fold cross-validation. The leave-one-out estimator is nearly
unbiased as an estimator of E[εn].

3.2. Bootstrap Error Estimators. Resampling methodology,
as mentioned above in generating ensemble classifiers, can
be used for estimating errors. In fact, bootstrap error
estimation was proposed by Efron [25], before its use in
bagging. The actual proportion of times a data point (xi, yi)
appears in a bootstrap sample S∗n can be written as P∗i =
(1/n)Σn

j=1I(x∗j ,y∗j )=(xi,yi), where IS = 1 if the statement S is true,
zero otherwise. The basic bootstrap (or “zero bootstrap”) is
given by

ε̂0 =
∑B

b=1

∑n
i=1

∣
∣
∣yi −Ψn

(
S∗bn
)

(xi)
∣
∣
∣ IP∗bi =0

∑B
b=1

∑n
i=1 IP∗bi =0

, (8)

With the number of bootstrap sample B being between 25
and 200, as recommended in [25]. Bootstrap 632 is a variant,
which tries to correct the bias of the basic bootstrap estimator
by performing an average with the resubstitution estimator
[25]:

ε̂b632 = (1− 0.632)ε̂resub + 0.632ε̂0. (9)

Bootstrap 632 plus is another modified version of bootstrap,
proposed in [26], which is intended for highly-overfitting
classification rules. Bootstrap 632 plus attempts to adaptively
find the weights in (9) that offset the effects of overfitting.
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Figure 5: Empirical deviation distribution (a) and box plots (b), for breast cancer gene expression data, sample size n = 20, and
dimensionality p = 2, with different base classification rules.

The weights depend on the relative overfitting rate R and no-
information error rate γ. In dichotomous classification, R and
γ are estimated from p̂1, the proportion of observed samples
belonging to class 1 and q̂1, the proportion of classifier
outputs belonging to class 1. The relations are as follows:

γ̂ = p̂1
(
1− q̂1

)
+ q̂1

(
1− p̂1

)
,

R̂ = ε̂0 − ε̂resub

γ̂ − ε̂resub
,

ŵ = .632

1− .368R̂
,

ε̂b632+ = (1− ŵ)ε̂resub + ŵε̂0.

(10)

3.3. Bolstered Error Estimators. Bolstered estimation was
proposed in [27]. It has shown promising performance for
small sample sizes in terms of root mean square error. While
it is comparable to bootstrap methods in many cases, bol-
stered estimators are typically much more computationally
efficient than the bootstrap. The main idea of bolstering
is to put a kernel at each of the sample point, called
“bolstering kernel” to smooth the variance of counting-
based estimation methods (in this paper, we adopt Gaussian
bolstering kernels). When the classifiers are overfitted, and
hence, resubstitution estimates are optimistically biased,
then bolstering at a misclassified point will increase this bias.
Semibolstering is suggested for correcting this, by conducting

no bolstering at misclassified points. We refer the reader to
[27] for the full details (in this paper, we employ the bolstered
and semibolstered resubstitution estimators of [27]).

3.4. Out-of-Bag Error Estimators. Breiman [21] originally
proposed the out-of-bag method to estimate the general-
ization error of bagged predictors of CART and the node
priority probabilities. Bylander [22] later did a simulation
study comparing out-of-bag and cross-validation for tree
classification C4.5 and concluded that both are biased.
Banfield et al. [23] used out-of-bag in a large simulation of
investigating performances of a variety of ensemble methods.
Martı́nez-Muñoz and Suárez [28], in an attempt to find
the optimal number of components of ensembles, employed
out-of-bag as the optimization criterion. Despite that, the
properties of the out-of-bag estimator remain largely unclear,
in particular, the issue of bias. We propose in the sequel
a modification to the standard out-of-bag estimator that
removes nearly all of its bias (as evidenced by the numerical
experiments in Section 4).

In bagging, component classifiers are designed based on
bootstrap sets, each of which contain on average 63% of
the original sample set. Hence, there are approximately 37%
of the data which are not used to build the classifier and
are therefore uncorrelated with it. Out-of-bag estimates are
obtained by testing the majority voting classifier via those
individual classifiers in the ensemble that are uncorrelated
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Figure 6: Empirical deviation distribution (a) and box plots (b), for lung cancer gene expression data, sample size n = 20, and dimensionality
p = 2, with different base classification rules.

with the testing point, that is, those classifiers whose training
sets do not contain the testing points. Suppose we resample
the original sample set k times, leading to k bootstrap sample

sets S∗ j . Let P
j
i = 1 if sample i appears in the bootstrap

sample S∗ j , and P
j
i = 0, otherwise, for i = 1, . . . ,n.

Denote

A0(i) =
k∑

j=1

I{P j
i =0}I{Yi=0},

B0(i) =
k∑

j=1

I{P j
i =0}I{Ψn(S∗ j )(Xi)=1}I{Yi=0},

A1(i) =
k∑

j=1

I{P j
i =0}I{Yi=1},

B1(i) =
k∑

j=1

I{P j
i =0}I{Ψn(S∗ j )(Xi)=0}I{Yi=1}, (11)

for i = 1, . . . ,n. Notice that Am(i) is equal to the number of
times that sample i in class m appears across all bootstrap
sample sets, while Bm(i) is equal to the number of times
that sample i in class m appears and is misclassified across all

bootstrap sample sets. Then the out-of-bag error estimator,
as proposed by Breiman in [4], can be written as

ε̂oob = 1
n

n∑

i=1

[
I{B0(i)≥A0(i)/2}I{A0(i)>0} + I{B1(i)≥A1(i)/2}I{A1(i)>0}

]
.

(12)

The estimator, as formulated above, will be optimistically
biased, in general, according to the following rationale.
Clearly, when Yi = j and Aj(i) = 0, then the ith sample
point belongs to all of the bootstrap samples, so there are
no individual classifiers to test on the ith point. In other
words, the “out-of-bag ensemble” of classifiers for that point
is empty in this case. That means that, with training sample
size of n, we often have fewer than n samples to perform
the out-of-bag estimation. In computing the proportion of
incorrect classification by the ensemble, one should therefore
divide not by n as in (12), but rather by n minus the number
of times when the out-of-bag ensembles are empty, which
leads to the following modified out-of-bag estimator:

ε̂moob = 1
n−∑n

i=1

[
I{A0(i)=0} + I{A1(i)=0}

]

×
n∑

i=1

[
I{B0(i)≥A0(i)/2}I{A0(i)>0} + I{B1(i)≥A1(i)/2}I{A1(i)>0}

]
.

(13)
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Figure 7: Empirical deviation distribution (a) and box plots (b), for prostate cancer mass-spectrometry data, sample size n = 20, and
dimensionality p = 2, with different base classification rules.

As shown by the numerical results in Section 4, this estimator
has approximately the bias of leave-one-out; that is, it is
only slightly pessimistically biased. As far as we know,
this formulation of the out-of-bag estimator has not been
explicitly given in the literature.

4. Simulation Study

This section reports the results of an extensive simula-
tion study, which were conducted on both synthetic and
publicly available microarray data and protein abundance
mass spectrometry data. We present here selected repre-
sentative results; the full set of results can be found on
the companion website, at http://gsp.tamu.edu/Publications/
supplementary/oob. We simulated bagged ensembles of lin-
ear discriminant analysis (LDA), 3-nearest neighbors (3NN),
and decision trees (CART) [24], and computed actual
and estimated errors, according to the different estimation
methods. These estimators were evaluated based on the
distribution of their deviation from the true error, and in
terms of bias, variance, and root mean square (RMS) errors.

4.1. Methods. We compared the performances of estimators
for varying number of training samples with different
dimensions of the feature space. The dimensionality and
number of samples are selected to be compatible with a

small-sample scenario (in this paper, the dimensionality is
kept fixed at p = 2). For patient data, a small number of
features (once again, p = 2 in this paper) are first selected
by the t-test. We afterwards randomly draw a number of
samples to be used as the training set and employed the
rest as a testing set. The number of training points are
chosen to be small to keep the small sample setting, and
to have a large enough testing set. This was repeated 1000
times to get the empirical deviation distribution [18], that
is, the distribution of estimated minus actual errors, for the
different error estimators. The results are presented in forms
of beta-fit curves, box-plots, and bias, variance, and RMS
curves in order to provide as detailed as possible a picture of
the empirical deviation distributions of the error estimators.

4.2. Simulation Based on Synthetic Data. We employ here
the spherical Gaussian model, where the covariance matrix
is identity and the two mean vectors are symmetric over
the origin. With that assumption, we varied the Bayes error
of the model by changing the distance between the two
means. Models with different Bayes errors and dimension are
compared over varying number of samples. The feature-label
distribution is known and this allows us to exactly compute
the true error of the designed classifier, which is then used to
derive the empirical deviation distribution for the different
estimators.
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Table 1: Bias, variance (standard deviation), and RMS for different error estimators, with different base classification rules, for breast cancer
gene expression data, and dimensionality p = 2.

Rule n stat resb boot bresb loo b632 oob sbresb b632plus cv5

lda 20 bias −0.0388 0.0287 −0.0104 0.0063 0.0039 0.0076 0.0244 0.0092 0.0143

sd 0.0908 0.0944 0.0789 0.1004 0.0912 0.1003 0.0933 0.0938 0.1140

rms 0.0988 0.0986 0.0795 0.1006 0.0913 0.1006 0.0964 0.0942 0.1149

lda 40 bias −0.0198 0.0082 −0.0084 −0.0012 −0.0021 0.0002 0.0168 −0.0011 −0.0044

sd 0.0657 0.0642 0.0614 0.0671 0.0638 0.0673 0.0676 0.0641 0.0714

rms 0.0686 0.0647 0.0620 0.0671 0.0639 0.0673 0.0696 0.0641 0.0716

lda 60 bias −0.0157 −0.0000 −0.0097 −0.0045 −0.0058 −0.0036 0.0104 −0.0054 −0.0011

sd 0.0577 0.0559 0.0544 0.0580 0.0560 0.0581 0.0586 0.0560 0.0586

rms 0.0598 0.0559 0.0553 0.0582 0.0563 0.0582 0.0595 0.0563 0.0587

cart 20 bias −0.1554 0.0456 −0.0330 0.0226 −0.0284 0.0267 −0.0225 0.0096 0.0094

sd 0.0653 0.1047 0.0671 0.1210 0.0798 0.1229 0.0700 0.1059 0.1187

rms 0.1686 0.1142 0.0747 0.1231 0.0847 0.1258 0.0735 0.1063 0.1190

cart 40 bias −0.1583 0.0323 −0.0358 0.0095 −0.0378 0.0143 −0.0284 −0.0094 0.0058

sd 0.0484 0.0697 0.0502 0.0774 0.0533 0.0799 0.0516 0.0671 0.0810

rms 0.1655 0.0769 0.0616 0.0780 0.0653 0.0812 0.0589 0.0677 0.0812

cart 60 bias −0.1722 0.0211 −0.0377 0.0001 −0.0501 0.0043 −0.0317 −0.0232 −0.0050

sd 0.0400 0.0624 0.0473 0.0705 0.0473 0.0701 0.0472 0.0590 0.0695

rms 0.1768 0.0658 0.0605 0.0705 0.0689 0.0703 0.0569 0.0634 0.0697

3nn 20 bias −0.0964 0.0575 −0.0478 0.0270 0.0009 0.0269 −0.0176 0.0273 0.0076

sd 0.0716 0.0996 0.0649 0.1174 0.0835 0.1167 0.0778 0.1005 0.1156

rms 0.1201 0.1150 0.0806 0.1204 0.0835 0.1197 0.0798 0.1041 0.1159

3nn 40 bias −0.0952 0.0406 −0.0481 0.0109 −0.0094 0.0139 −0.0214 0.0075 0.0036

sd 0.0529 0.0687 0.0493 0.0787 0.0590 0.0785 0.0577 0.0669 0.0801

rms 0.1089 0.0798 0.0689 0.0794 0.0598 0.0797 0.0615 0.0673 0.0802

3nn 60 bias −0.0962 0.0316 −0.0504 0.0034 −0.0154 0.0054 −0.0261 −0.0012 −0.0008

sd 0.0432 0.0625 0.0452 0.0693 0.0526 0.0693 0.0514 0.0595 0.0680

rms 0.1054 0.0701 0.0677 0.0694 0.0548 0.0695 0.0576 0.0595 0.0680

4.3. Simulation Based on Patient Data. We utilized the
following publicly available data sets from published studies
in order to study the performance of bagging in the context
of genomics and proteomics applications.

4.3.1. Breast Cancer Gene Expression Data. These data come
from the breast cancer classification study in [29], which
analyzed N = 295 gene-expression microarrays containing a
total of 25760 transcripts each. Filter-based feature selection
was performed on a 70-gene prognosis profile, previously
published by the same authors in [30]. Classification is
between the good-prognosis class (115 samples), and the
poor-prognosis class (180 samples), where prognosis is
determined retrospectively in terms of survivability [29].

4.3.2. Lung Cancer Gene Expression Data. We employed
here the data set “A” from the study in [31] on nonsmall
cell lung carcinomas (NSCLC) that analyzed N = 186
gene expression microarrays containing a total of 12600
transcripts each. NSCLC is subclassified as adenocarcinomas,

squamous cell carcinomas, and large-cell carcinomas, of
which adenocarcinomas are the most common subtypes and
of interest to classify from other subtypes of NSCLC. Classi-
fication is thus between adenocarcinomas (139 samples) and
nonadenocarcinomas (47 samples).

4.3.3. Prostate Cancer Mass Spectrometry Data. Given the
recent keen interest on deriving serum-based proteomic
biomarkers for the diagnosis of cancer [32], we also included
in this study data from a proteomic study of prostate
cancer reported in [33]. It consists of SELDI-TOF mass
spectrometry of N = 326 samples, which yield mass spectra
for 45000 n/z (mass over charge) values. Filter-based feature
selection is employed to find the top discriminatory n/z
values to be used in the experiment. Classification is between
prostate cancer patients (167 samples) and nonprostate
patients, including benign prostatic hyperplasia and healthy
patients (159 samples). We use the raw spectra values,
without baseline subtraction, as we found that this leads to
better classification rates.
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Table 2: Bias, variance (standard deviation), and RMS for different error estimators, with different base classification rules, for lung cancer
gene expression data, and dimensionality p = 2.

Rule n stat resb boot bresb loo b632 oob sbresb b632plus cv5

lda 20 bias −0.0243 0.0238 −0.0070 0.0075 0.0061 0.0103 0.0294 0.0094 0.0106

sd 0.0938 0.0938 0.0827 0.0989 0.0923 0.0988 0.0910 0.0932 0.1025

rms 0.0969 0.0967 0.0830 0.0992 0.0925 0.0993 0.0956 0.0937 0.1031

lda 40 bias −0.0118 0.0109 0.0012 0.0017 0.0025 0.0044 0.0273 0.0033 0.0045

sd 0.0675 0.0655 0.0628 0.0684 0.0656 0.0685 0.0652 0.0656 0.0694

rms 0.0685 0.0664 0.0628 0.0684 0.0657 0.0686 0.0707 0.0657 0.0695

lda 60 bias −0.0092 0.0067 0.0023 −0.0004 0.0009 0.0015 0.0235 0.0012 0.0020

sd 0.0606 0.0587 0.0570 0.0608 0.0590 0.0608 0.0586 0.0590 0.0610

rms 0.0613 0.0591 0.0570 0.0608 0.0591 0.0609 0.0632 0.0590 0.0610

cart 20 bias −0.0945 0.0321 −0.0025 0.0100 −0.0145 0.0139 0.0076 0.0031 0.0017

sd 0.0502 0.0852 0.0623 0.0916 0.0683 0.0945 0.0676 0.0811 0.0849

rms 0.1069 0.0911 0.0623 0.0921 0.0699 0.0955 0.0681 0.0812 0.0849

cart 40 bias −0.0926 0.0226 −0.0230 0.0071 −0.0198 0.0088 −0.0141 −0.0071 0.0022

sd 0.0384 0.0630 0.0439 0.0694 0.0504 0.0705 0.0472 0.0577 0.0654

rms 0.1003 0.0670 0.0496 0.0698 0.0542 0.0710 0.0493 0.0581 0.0655

cart 60 bias −0.0938 0.0202 −0.0277 0.0043 −0.0218 0.0068 −0.0210 −0.0103 0.0012

sd 0.0335 0.0544 0.0397 0.0590 0.0438 0.0597 0.0414 0.0496 0.0571

rms 0.0996 0.0580 0.0484 0.0592 0.0490 0.0601 0.0464 0.0507 0.0571

3nn 20 bias −0.0483 0.0474 −0.0185 0.0114 0.0122 0.0132 0.0027 0.0238 0.0040

sd 0.0552 0.0803 0.0529 0.0876 0.0677 0.0870 0.0623 0.0765 0.0787

rms 0.0734 0.0932 0.0561 0.0884 0.0688 0.0880 0.0624 0.0802 0.0788

3nn 40 bias −0.0489 0.0236 −0.0270 0.0043 −0.0031 0.0055 −0.0094 0.0027 −0.0004

sd 0.0435 0.0602 0.0411 0.0626 0.0519 0.0624 0.0484 0.0555 0.0593

rms 0.0655 0.0646 0.0492 0.0627 0.0520 0.0626 0.0493 0.0555 0.0593

3nn 60 bias −0.0500 0.0198 −0.0317 0.0031 −0.0059 0.0036 −0.0147 −0.0009 −0.0028

sd 0.0381 0.0526 0.0383 0.0555 0.0459 0.0553 0.0439 0.0486 0.0514

rms 0.0629 0.0562 0.0497 0.0556 0.0462 0.0555 0.0463 0.0486 0.0514

4.4. Results and Discussion

4.4.1. Synthetic Data. The various error estimators can be
grouped into four groups according to performance. The
first group corresponds to resubstitution, which showed to
be optimistically biased for the bagged LDA, 3NN, and
CART classifiers, with a root mean square error that increases
substantially with increasing Bayes error; resubstitution had
been previously known to behave as such for single LDA,
3NN, and CART classifiers. The second group contains
leave-one-out, fivefold cross-validation and out-of-bag. As
we can see from Figure 1, the out-of-bag estimator, with
the formulation given in (13), is almost identical to leave-
one-out. This second group shows very small bias but
considerably high variance. The resemblance of out-of-bag to
cross-validation, which had been pointed out already in [22],
is explained by the similar way of partitioning the sample
set. This group shows much smaller bias than resubstitution,
and this is consistent as the Bayes error increases. However,
this group displayed larger variability than resubstitution
and the bootstrap group, as we already knew from [19]

on single classification rules. The third group includes the
basic bootstrap, bootstrap 632, and bootstrap 632 plus; this
group displays very competitive performance in terms of root
mean square error. Even though they often perform better
than the two previous groups, the estimators in this group
took the longest time to compute across all experiments.
The last group consists of the bolstered and semibolstered
error estimators, which exhibit superior performance to
the other groups, in terms of RMS error, despite being
far less computationally expensive than cross-validation and
bootstrap estimators.

Generally, for a fixed model, almost all the estimates work
better when the sample size increases and this holds for all
three bagged classifiers. In Figure 2, we see that there is a
consistent trend; as the Bayes error increases or, equivalently,
the classification problem becomes harder, error estimation
performance decreases steadily, in term of root mean square
error; this is true for all error estimation methods. Bolstered
error estimators showed consistent superior performance to
the others, in terms of accuracy (RMS) and computational
cost. These conclusions are also supported by Figures 3 and 4.
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Table 3: Bias, variance (standard deviation), and RMS for different error estimators, with different base classification rules, for prostate
cancer mass-spectrometry data, and dimensionality p = 2.

Rule n stat resb boot bresb loo b632 oob sbresb b632plus cv5

lda 20 bias −0.0506 0.0181 −0.0277 −0.0033 −0.0072 −0.0044 −0.0050 −0.0019 0.0006

sd 0.0871 0.1025 0.0879 0.1031 0.0949 0.1037 0.0993 0.0985 0.1071

rms 0.1007 0.1041 0.0921 0.1031 0.0951 0.1038 0.0994 0.0985 0.1071

lda 40 bias −0.0283 0.0079 −0.0189 −0.0051 −0.0054 −0.0042 −0.0029 −0.0039 −0.0031

sd 0.0609 0.0688 0.0626 0.0673 0.0647 0.0683 0.0674 0.0655 0.0693

rms 0.0672 0.0693 0.0654 0.0675 0.0649 0.0684 0.0675 0.0656 0.0694

lda 60 bias −0.0192 0.0045 −0.0141 −0.0042 −0.0042 −0.0044 −0.0008 −0.0035 −0.0017

sd 0.0514 0.0572 0.0524 0.0542 0.0542 0.0549 0.0559 0.0546 0.0577

rms 0.0549 0.0573 0.0542 0.0544 0.0544 0.0550 0.0560 0.0547 0.0577

cart 20 bias −0.1504 0.0409 −0.0500 0.0164 −0.0295 0.0248 −0.0441 0.0014 0.0059

sd 0.0693 0.1082 0.0765 0.1198 0.0847 0.1223 0.0791 0.1053 0.1169

rms 0.1655 0.1157 0.0914 0.1209 0.0897 0.1247 0.0905 0.1054 0.1170

cart 40 bias −0.1412 0.0320 −0.0436 0.0047 −0.0317 0.0096 −0.0418 −0.0108 0.0044

sd 0.0461 0.0701 0.0497 0.0753 0.0539 0.0773 0.0503 0.0646 0.0787

rms 0.1485 0.0771 0.0661 0.0755 0.0625 0.0779 0.0654 0.0655 0.0788

cart 60 bias −0.1397 0.0284 −0.0404 0.0021 −0.0334 0.0088 −0.0393 −0.0155 0.0049

sd 0.0347 0.0580 0.0418 0.0626 0.0441 0.0648 0.0424 0.0521 0.0636

rms 0.1439 0.0646 0.0581 0.0627 0.0554 0.0654 0.0578 0.0544 0.0637

3nn 20 bias −0.0820 0.0554 −0.0488 0.0165 0.0048 0.0200 −0.0371 0.0233 0.0104

sd 0.0748 0.1041 0.0757 0.1100 0.0871 0.1129 0.0805 0.0993 0.1037

rms 0.1110 0.1179 0.0901 0.1112 0.0872 0.1147 0.0886 0.1020 0.1043

3nn 40 bias −0.0673 0.0405 −0.0377 0.0029 0.0008 0.0067 −0.0271 0.0099 0.0040

sd 0.0458 0.0643 0.0460 0.0679 0.0536 0.0695 0.0504 0.0585 0.0644

rms 0.0814 0.0760 0.0595 0.0680 0.0536 0.0698 0.0572 0.0593 0.0645

3nn 60 bias −0.0660 0.0304 −0.0375 0.0015 −0.0051 0.0040 −0.0269 0.0016 0.0006

sd 0.0389 0.0534 0.0393 0.0560 0.0451 0.0563 0.0435 0.0482 0.0557

rms 0.0766 0.0614 0.0543 0.0560 0.0454 0.0564 0.0511 0.0482 0.0557

We observed that the performance of error estimators
other than out-of-bag (which can only be applied to ensem-
ble rules) were consistent with their performance with the
corresponding single classifier, as reported in other studies
[18, 27].

4.4.2. Patient Data. The results for the real patient data
sets were entirely consistent with those for the synthetic
data, as can be seen in Figures 5, 6, and 7 and Tables
1, 2, and 3. We again observed the division of the error
estimators in the same four groups according to perfor-
mance. We also observed that the bolstered error estimator
group displayed the best performance, as measured by
RMS.

5. Conclusion

We presented an extensive study of several error estimation
methods for bagged ensembles of typical classifiers. We
provided here an explicit formulation for the out-of-bag
error estimator, which is intended to remove estimator bias.

We observed that this out-of-bag error estimator was almost
identical to leave-one-out, under spherical Gaussian models,
and conjectured a very close relationship between the two.
The results of our simulation study were consistent between
synthetic and real patient data, and the performance of
error estimators that can be applied to single classifiers
(i.e., all of them save for the out-of-bag estimator) with
the bagged classifiers was comparable to their performance
with the corresponding single classifier, as reported else-
where. The bolstered error estimators exhibited the best
performance, in terms of RMS error, in our simulation
study, despite being far less computationally expensive than
cross-validation and bootstrap estimators. We hope this
work will provide useful guidance to practitioners working
with bagged ensemble classifiers designed on small-sample
data.
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