128 research outputs found

    Visualization of Flow in Scroll Compressor by Radiography

    Get PDF
    Saving energy and resources in the air conditioning industry is required in order to protect the global environment. To save resources, miniaturization of the compressor in air conditioners is necessary. This miniaturization will increase the oil circulation rate (OCR) of the compressor because the oil separation space will be reduced. To improve the oil separation efficiency, it is necessary to understand the appearance of the flow of oil and refrigerant in the compressor chamber. This paper reports a technique to visualize the flow by using neutron radiography and X-ray radiography. Furthermore, a method to measure the oil concentration by carrying out image processing is described

    Observation of distorted Maxwell-Boltzmann distribution of epithermal ions in LHD

    Get PDF
    A distorted Maxwell-Boltzmann distribution of epithermal ions is observed associated with the collapse of energetic ions triggered by the tongue shaped deformation. The tongue shaped deformation is characterized by the plasma displacement localized in the toroidal, poloidal, and radial directions at the non-rational magnetic flux surface in toroidal plasma. Moment analysis of the ion velocity distribution measured with charge exchange spectroscopy is studied in order to investigate the impact of tongue event on ion distribution. A clear non-zero skewness (3rd moment) and kurtosis (4th moment –3) of ion velocity distribution in the epithermal region (within three times of thermal velocity) is observed after the tongue event. This observation indicates the clear evidence of the distortion of ion velocity distribution from Maxwell-Boltzmann distribution. This distortion from Maxwell-Boltzmann distribution is observed in one-third of plasma minor radius region near the plasma edge and disappears in the ion-ion collision time scale

    Electron temperature profile collapse induced by double-odd-parity MHD mode in the Large Helical Device

    Get PDF
    In this paper, we report new results of a beam switching experiment aiming at a reversed magnetic shear profile formation for the study of an MHD-mode-induced profile collapse event. A transient MHD mode, whose oscillation frequency chirps down, is observed. The electron temperature profile collapse is induced by the mode activity, leading to the flattening of the central electron temperature profile. The radial mode structure is the double-oddparity at the beginning, but it transits to the even-parity in its final stage. The central electron temperature profile recovers after the radial mode structure changes to the even-parity, even though the mode itself does not disappear

    Optics Design for Microwave Imaging Reflectometry in LHD

    Get PDF
    An optics system for microwave imaging reflectometry (MIR) in the Large Helical Device (LHD) was newly developed to optimize the performance of the two-dimensional microwave receiver array. Reflected microwaves from the plasma and the first local oscillator (LO) wave are transmitted to the receiver array via the optics from the front. Finite-difference time-domain (FDTD) calculation was used to design the ellipsoidal or hyperboloidal shapes of the quasi-optical mirrors. It is confirmed that the LO beam in the constructed system covers the receiver antenna aperture area as intended. The S/N ratios of the signals are improved with this optimized optics system from those in the previous system

    Broadband Multichannel Radiometer for ECE Measurements on KSTAR

    Get PDF
    A broadband heterodyne radiometer system has been developed and installed on KSTAR to measure second harmonic electron cyclotron emission (ECE) at the magnetic field of 3 T. The system consisting of two radiometers (110-162 GHz and 164-196 GHz) can cover a frequency range of 110-196 GHz. The unique and key components to construct this ECE diagnostic instrument are specially-designed detector modules and a diplexer for splitting ECE radiation with high efficiency. The minimum detectable electron temperature with a time response of 1 ?s is about 0.23 eV. The observed signal intensity is roughly consistent with the value estimated by using characteristics of various components (waveguide components, sub-harmonic mixers, amplifiers, and intermediate frequency detectors). In this article, design considerations and preliminary ECE measurements will be described

    Response of plasma toroidal flow to the transition between nested and stochastic magnetic field in LHD

    Get PDF
    Response of the plasma toroidal flow to the forward and backward transition between the nested and the stochastic magnetic field is studied using the charge exchange spectroscopy in the large helical device (LHD). Abrupt damping of toroidal flow associated with a transition from nested magnetic flux surface to a stochastic magnetic field is observed when the magnetic shear at the rational surface decreases to 0.5 after the exchange of the neutral beam injection (NBI) direction from co- to counter-direction in LHD. The stochastization of magnetic field occurs only in a narrow range of magnetic shear near 0.5 and spontaneousback-transition from stochastic to nested magnetic field (healing) is observed in the steady-state phase of magnetic shear. When the NBI direction is changed from counter- to co-direction, the healing of magnetic field occurs associated with the increase of magnetic shear

    Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases

    Get PDF
    Aims The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them. Methods and Results We performed WES of 23 probands diagnosed with early-onset (<65 years) CCSD and analyzed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency < 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as “pathogenic” by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that 2 variants in KCNH2 and SCN5A, 4 variants in SCN10A, and 1 variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from “Uncertain significance” to “Likely pathogenic” in 6 probands. Conclusions Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD. Translational Perspective Whole-exome sequencing (WES) may be helpful in determining the causes of cardiac conduction system disease (CCSD), however, the identification of pathogenic variants remains a challenge. We performed WES of 23 probands diagnosed with early-onset CCSD, and identified 12 pathogenic or likely pathogenic variants in 11 of these probands (48%) according to the 2015 ACMG standards and guidelines. In this context, functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants, and SCN10A may be one of the major development factors in CCSD

    Distorted magnetic island formation during slowing down to mode locking in helical plasmas

    Get PDF
    We report the first observation of the formation of a magnetic island before the occurrence of mode locking in helical plasma. New analysis and observation techniques applied to the ECE signal and poloidal flow in LHD experiments yield the following results. (i) A magnetic island structure is present, rotating at the end of the rotating phase. (ii) The rotation speed of the island is not uniform in space and time. The rotation of the island changes significantly at the end of the rotating phase, and the deformation increases until the mode is locked
    corecore