169 research outputs found

    Rapid and Efficient Removal of Perfluorooctanoic Acid from Water with Fluorine-Rich Calixarene-Based Porous Polymers

    Get PDF
    On account of its nonbiodegradable nature and persistence in the environment, perfluorooctanoic acid (PFOA) accumulates in water resources and poses serious environmental issues in many parts of the world. Here, we present the development of two fluorine-rich calix[4]arene-based porous polymers, FCX4-P and FCX4-BP, and demonstrate their utility for the efficient removal of PFOA from water. These materials featured Brunauer–Emmett–Teller (BET) surface areas of up to 450 m^{2} g^{-1}, which is slightly lower than their nonfluorinated counterparts (up to 596 m^{2} g^{-1}). FCX4-P removes PFOA at environmentally relevant concentrations with a high rate constant of 3.80 g mg^{-1} h^{-1} and reached an exceptional maximum PFOA uptake capacity of 188.7 mg g^{-1}. In addition, it could be regenerated by simple methanol wash and reused without a significant decrease in performance

    Hepatolithiasis with biliary ascariasis – a case report

    Get PDF
    BACKGROUND: Biliary ascariasis is regarded as possible etiological factor for hepatolithiasis. Here we report one case of a patient with hepatolithiasis with biliary ascariasis who developed a liver abscess, which was treated with partial hepatectomy. CASE PRESENTATION: A young adult female presented with epigastric pain and vomiting with repeated attacks of cholangitis. ERCP showed evidence of multiple intrahepatic calculi with the development of abscess in the left lobe of liver. The patient underwent partial hepatectomy and was found to have biliary ascariasis on histology. She was treated with antihelmenthic therapy and has had an uneventful postoperative period of 2 years. CONCLUSION: Biliary ascariasis with hepatolithiasis, although rare, should be considered in endemic countries

    Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology

    Get PDF
    Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ54-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts

    Ribozyme-based insulator parts buffer synthetic circuits from genetic context

    Get PDF
    Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter to the next. Thus, connecting circuits requires physically connecting a promoter to the next circuit. We show that the sequence at the junction between the input promoter and circuit can affect the input-output response (transfer function) of the circuit. A library of putative sequences that might reduce (or buffer) such context effects, which we refer to as 'insulator parts', is screened in Escherichia coli. We find that ribozymes that cleave the 5′ untranslated region (5′-UTR) of the mRNA are effective insulators. They generate quantitatively identical transfer functions, irrespective of the identity of the input promoter. When these insulators are used to join synthetic gene circuits, the behavior of layered circuits can be predicted using a mathematical model. The inclusion of insulators will be critical in reliably permuting circuits to build different programs.Life Technologies, Inc.United States. Defense Advanced Research Projects Agency (DARPA CLIO N66001-12-C-4018)United States. Office of Naval Research (N00014-10-1-0245)National Science Foundation (U.S.) (CCF-0943385)National Institutes of Health (U.S.) (AI067699)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (SynBERC, SA5284-11210

    Effect of Maternal HIV-1 Status and Antiretroviral Drugs on Haematological Profiles of South African Infants in Early Life

    Get PDF
    Maternal HIV-1 status and antiretroviral drug exposure may influence the haematological profiles of infants. We recruited infants from 118 uninfected control women and from 483 HIV-1 infected women who received no antiretroviral drugs (n=28), or received single-dose Nevirapine (sdNVP) (n=424) or triple-drug combination therapy (n=31) to reduce HIV-1 transmission. Blood was drawn from infants within 24 hours of delivery or 6-12 weeks post-delivery and full blood counts performed using a fully automated AcT-5-diff haematology analyser and reference controls. Exposed uninfected (EU; no NVP) differed from control infants only in having lower basophil counts and percentages. In all infant groups, leukocyte profiles showed characteristic quantitative changes with age in the first 6 weeks of life. HIV-1 infected infants displayed by 6 weeks elevations in white blood cells, lymphocyte, monocyte and basophil counts, and monocyte and basophil percentages, when compared to EU infants. At birth EU NVP-treated infants exhibited elevated monocyte percentages and counts and basophil counts that did not persist at 6 weeks. Interestingly, EU newborns of mothers with high CD4 counts (> 500 cells/μl) that had taken sdNVP had significantly elevated white blood cell, monocyte and basophil counts when compared to newborn infants of mothers with similar CD4 counts that had not taken sdNVP; this was not evident in infants of mothers with CD4 counts <200 cells/μl. These previously undescribed features may affect immune response capability in early life and clinical consequences of such changes need to be further investigated

    Hydrogen Peroxide Acts on Sensitive Mitochondrial Proteins to Induce Death of a Fungal Pathogen Revealed by Proteomic Analysis

    Get PDF
    How the host cells of plants and animals protect themselves against fungal invasion is a biologically interesting and economically important problem. Here we investigate the mechanistic process that leads to death of Penicillium expansum, a widespread phytopathogenic fungus, by identifying the cellular compounds affected by hydrogen peroxide (H2O2) that is frequently produced as a response of the host cells. We show that plasma membrane damage was not the main reason for H2O2-induced death of the fungal pathogen. Proteomic analysis of the changes of total cellular proteins in P. expansum showed that a large proportion of the differentially expressed proteins appeared to be of mitochondrial origin, implying that mitochondria may be involved in this process. We then performed mitochondrial sub-proteomic analysis to seek the H2O2-sensitive proteins in P. expansum. A set of mitochondrial proteins were identified, including respiratory chain complexes I and III, F1F0 ATP synthase, and mitochondrial phosphate carrier protein. The functions of several proteins were further investigated to determine their effects on the H2O2-induced fungal death. Through fluorescent co-localization and the use of specific inhibitor, we provide evidence that complex III of the mitochondrial respiratory chain contributes to ROS generation in fungal mitochondria under H2O2 stress. The undesirable accumulation of ROS caused oxidative damage of mitochondrial proteins and led to the collapse of mitochondrial membrane potential. Meanwhile, we demonstrate that ATP synthase is involved in the response of fungal pathogen to oxidative stress, because inhibition of ATP synthase by oligomycin decreases survival. Our data suggest that mitochondrial impairment due to functional alteration of oxidative stress-sensitive proteins is associated with fungal death caused by H2O2

    The Status of Dosage Compensation in the Multiple X Chromosomes of the Platypus

    Get PDF
    Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and “placentals”) by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse
    corecore