47 research outputs found

    Excess-entropy scaling in supercooled binary mixtures

    Get PDF
    Supercooled liquids near the glass transition show remarkable non-Arrhenius transport phenomena, whose origin is yet to be clarified. Here, the authors use GPU molecular dynamics simulations for various binary mixtures in the supercooled regime to show the validity of a quasiuniversal excess-entropy scaling relation for viscosity and diffusion

    Explaining why simple liquids are quasi-universal

    Get PDF
    It has been known for a long time that many simple liquids have surprisingly similar structure as quantified, e.g., by the radial distribution function. A much more recent realization is that the dynamics are also very similar for a number of systems with quite different pair potentials. Systems with such non-trivial similarities are generally referred to as "quasi-universal". From the fact that the exponentially repulsive pair potential has strong virial potential-energy correlations in the low-temperature part of its thermodynamic phase diagram, we here show that a liquid is quasi-universal if its pair potential can be written approximately as a sum of exponential terms with numerically large prefactors. Based on evidence from the literature we moreover conjecture the converse, i.e., that quasi-universality only applies for systems with this property

    Inhaled Corticosteroids in Patients with Chronic Obstructive Pulmonary Disease and Risk of Acquiring Streptococcus pneumoniae Infection. A Multiregional Epidemiological Study

    Get PDF
    Background: Inhaled corticosteroids (ICS) are associated with an increased risk of clinical pneumonia among patients with chronic obstructive pulmonary disease (COPD). It is unknown whether the risk of microbiologically verified pneumonia such as pneumococcal pneumonia is increased in ICS users. Methods: The study population consists of all COPD patients followed in outpatient clinics in eastern Denmark during 2010-2017. ICS use was categorized into four categories based on accumulated use. A Cox proportional hazard regression model was used adjusting for age, body mass index, sex, airflow limitation, use of oral corticosteroids, smoking, and year of cohort entry. A propensity score matched analysis was performed for sensitivity analyses. Findings:  A total of 21,438 patients were included. Five hundred and eighty-two (2.6%) patients acquired a positive lower airway tract sample with S. pneumoniae during follow-up. In the multivariable analysis ICS-use was associated with a dose-dependent risk of S. pneumoniae as follows: low ICS dose: HR 1.11, 95% CI 0.84 to 1.45, p = 0.5; moderate ICS dose: HR 1.47, 95% CI 1.13 to 1.90, p = 0.004; high ICS dose: HR 1.77, 95% CI 1.38 to 2.29, p < 0.0001, compared to no ICS use. Sensitivity analyses confirmed these results. Interpretation: Use of ICS in patients with severe COPD was associated with an increased and dose-dependent risk of acquiring S. pneumoniae, but only for moderate and high dose. Caution should be taken when administering high dose of ICS to patients with COPD. Low dose of ICS seemed not to carry this risk

    Density-scaling exponents and virial potential-energy correlation coefficients for the (2n, n) Lennard-Jones system

    No full text
    This paper investigates the relation between the density-scaling exponent γ\gamma and the virial potential-energy correlation coefficient RR at several thermodynamic state points in three dimensions for the generalized (2n,n)(2n,n) Lennard-Jones (LJ) system for n=4,9,12,18n=4, 9, 12, 18, as well as for the standard n=6n=6 LJ system in two, three, and four dimensions. The state points studied include many low-density states at which the virial potential-energy correlations are not strong. For these state points we find the roughly linear relation γ≅3nR/d\gamma\cong 3nR/d in dd dimensions. This result is discussed in light of the approximate "extended inverse power law" description of generalized LJ potentials [N. P. Bailey et al., J. Chem. Phys. 129, 184508 (2008)]. In the plot of γ\gamma versus RR there is in all cases a transition around R≈0.9R\approx 0.9, above which γ\gamma starts to decrease as RR approaches unity. This is consistent with the fact that γ→2n/d\gamma\rightarrow 2n/d for R→1R\rightarrow 1, a limit that is approached at high densities and/or temperatures at which the repulsive r−2nr^{-2n} term dominates the physics
    corecore