282 research outputs found

    Ground-state baryons in nonperturbative quark dynamics

    Full text link
    We review the results obtained in an Effective Hamiltonian (EH) approach for the three-quark systems. The EH is derived starting from the Feynman--Schwinger representation for the gauge-invariant Green function of the three quarks propagating in the nonperturbative QCD vacuum and assuming the minimal area law for the asymptotic of the Wilson loop. It furnishes the QCD consistent framework within which to study baryons. The EH has the form of the nonrelativistic three-quark Hamiltonian with the perturbative Coulomb-like and nonperturbative string interactions and the specific mass term. After outlining the approach, methods of calculations of the baryon eigenenergies and some simple applications are explained in details. With only two parameters: the string tension σ=0.15GeV2\sigma=0.15 GeV^2 and the strong coupling constant αs=0.39\alpha_s=0.39 a unified quantitative description of the ground state light and heavy baryons is achieved. The prediction of masses of the doubly heavy baryons not discovered yet are also given. In particular, a mass of 3660MeV3660 MeV for the lightest Ξcc\Xi_{cc} baryon is found by employing the hyperspherical formalism to the three quark confining potential with the string junction.Comment: 25 pages, 4 figures included, LaTeX 2e; to be published in Phys. Atom. Nuc

    Pentaquarks in the Jaffe-Wilczek approximation

    Full text link
    The masses of uuddsˉuudd\bar s , uudddˉuudd\bar d and uussdˉuuss\bar d pentaquarks are evaluated in a framework of both the Effective Hamiltonian approach to QCD and spinless Salpeter using the Jaffe--Wilczek diquark approximation and the string interaction for the diquark--diquark--antiquark system. The pentaquark masses are found to be in the region above 2 GeV. That indicates that the Goldstone boson exchange effects may play an important role in the light pentaquarks. The same calculations yield the mass of [ud]2cˉ[ud]^2\bar c pentaquark \sim 3250 MeV and [ud]2bˉ[ud]^2\bar b pentaquark \sim 6509 MeV.Comment: 14 pages, 2 tables, LaTeX2e. References correcte

    Nucleon matrix elements and baryon masses in the Dirac orbital model

    Get PDF
    Using the expansion of the baryon wave function in a series of products of single quark bispinors (Dirac orbitals), the nonsinglet axial and tensor charges of a nucleon are calculated. The leading term yields gA=1.27g_A = 1.27 in good agreement with experiment. Calculation is essentially parameter-free and depends only on the strong coupling constant value αs\alpha_s. The importance of lower Dirac bispinor component, yielding 18% to the wave function normalization is stressed. As a check, the baryon decuplet masses in the formalism of this model are also computed using standard values of the string tension σ\sigma and the strange quark mass msm_s; the results being in a good agreement with experiment.Comment: 8 pages, 2 tables; LaTeX2

    Measurement of the analysing power in proton-proton elastic scattering at small angles

    Get PDF
    The proton analysing power in pp\vec{p}p elastic scattering has been measured at small angles at COSY-ANKE at 796 MeV and five other beam energies between 1.6 and 2.4 GeV using a polarised proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. Although the analysing power results agree well with the many published data at 796 MeV, and also with the most recent partial wave solution at this energy, the ANKE data at the higher energies lie well above the predictions of this solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a much better description of these new measurements.Comment: 5 pages, 3 figure

    The heavy baryons in the nonperturbative string approach

    Get PDF
    We present some piloting calculations of the short-range correlation coefficients for the light and heavy baryons and masses of the doubly heavy baryons ΞQQ\Xi_{QQ'} and ΩQQ\Omega_{QQ'} (Q,Q=c,bQ,Q'=c,b) in the framework of the simple approximation within the nonperturbative QCD approach.Comment: 21 pages; to appear in Phys. Atom. Nuc

    Measurement of the absolute differential cross section of proton-proton elastic scattering at small angles

    Get PDF
    The differential cross section for proton-proton elastic scattering has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12-16 degrees to 25-30 degrees, depending on the energy. Absolute normalisations of typically 3% were achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon a partial wave analysis. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations

    History of exotic Meson (4-quark) and Baryon (5-quark) States

    Full text link
    I briefly review the history of exotic meson (4-quark) and baryon (5-quark) states, which is rooted in the formalism of Regge pole and duality. There are robust model-independent predictions for the exchange of 4-quark (Baryonium) Regge trajectories in several processes, which are strongly supported by experiment. On the other hand the predictions for the spectroscopy of 4-quark resonances are based on specific QCD inspired models, with some experimental support. The corresponding predictions for the recently discovered exotic baryon (Pentaquark) state are briefly discussed.Comment: 14 pages Latex including 4 eps figures, final version to appear as a topical review in J. Phys.

    Luminescent properties of Bi-doped polycrystalline KAlCl4

    Full text link
    We observed an intensive near-infrared luminescence in Bi-doped KAlCl4 polycrystalline material. Luminescence dependence on the excitation wavelength and temperature of the sample was studied. Our experimental results allow asserting that the luminescence peaked near 1 um belongs solely to Bi+ ion which isomorphically substitutes potassium in the crystal. It was also demonstrated that Bi+ luminescence features strongly depend on the local ion surroundings

    Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    Full text link
    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partial-wave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of PP-matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G-matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determine the natural scale of the density for a possible phase transition into the MQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernova models. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.Comment: 57 pages, 22 figures, 7 tables; RevTeX 4; submitted to Phys. Atom. Nuc

    Higgs bosons in the simplest SUSY models

    Get PDF
    Nowadays in the MSSM the moderate values of tanβ\tan\beta are almost excluded by LEP II lower bound on the lightest Higgs boson mass. In the Next-to-Minimal Supersymmetric Standard Model the theoretical upper bound on it increases and reaches maximal value in the strong Yukawa coupling limit when all solutions of renormalization group equations are concentrated near the quasi-fixed point. For calculation of Higgs boson spectrum the perturbation theory method can be applied. We investigate the particle spectrum in the framework of the modified NMSSM which leads to the self-consistent solution in the strong Yukawa coupling limit. This model allows one to get mh125m_h\sim 125 GeV at values of tanβ1.9\tan\beta\ge 1.9. In the investigated model the lightest Higgs boson mass does not exceed 130.5±3.5130.5\pm 3.5 GeV. The upper bound on the lightest CP-even Higgs boson mass in more complicated supersymmetric models is also discussed.Comment: 27 pages, 5 figures included, LaTeX 2e. Plenary talk at the Conference of RAS Nuclear Physics Department 2000 in ITEP, Moscow, Russia; to appear in Phys. Atom. Nuc
    corecore