2,590 research outputs found

    Sound-Dr: Reliable Sound Dataset and Baseline Artificial Intelligence System for Respiratory Illnesses

    Full text link
    As the burden of respiratory diseases continues to fall on society worldwide, this paper proposes a high-quality and reliable dataset of human sounds for studying respiratory illnesses, including pneumonia and COVID-19. It consists of coughing, mouth breathing, and nose breathing sounds together with metadata on related clinical characteristics. We also develop a proof-of-concept system for establishing baselines and benchmarking against multiple datasets, such as Coswara and COUGHVID. Our comprehensive experiments show that the Sound-Dr dataset has richer features, better performance, and is more robust to dataset shifts in various machine learning tasks. It is promising for a wide range of real-time applications on mobile devices. The proposed dataset and system will serve as practical tools to support healthcare professionals in diagnosing respiratory disorders. The dataset and code are publicly available here: https://github.com/ReML-AI/Sound-Dr/.Comment: 9 pages, PHMAP2023, PH

    Reverberation Chamber Uniformity Validation and Radiated Susceptibility Test Procedures for the NASA High Intensity Radiated Fields Laboratory

    Get PDF
    The NASA Langley Research Center's High Intensity Radiated Fields Laboratory has developed a capability based on the RTCA/DO-160F Section 20 guidelines for radiated electromagnetic susceptibility testing in reverberation chambers. Phase 1 of the test procedure utilizes mode-tuned stirrer techniques and E-field probe measurements to validate chamber uniformity, determines chamber loading effects, and defines a radiated susceptibility test process. The test procedure is segmented into numbered operations that are largely software controlled. This document is intended as a laboratory test reference and includes diagrams of test setups, equipment lists, as well as test results and analysis. Phase 2 of development is discussed

    RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    Get PDF
    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks

    One-pot preparation of alumina-modified polysulfone-graphene oxide nanocomposite membrane for separation of emulsion-oil from wastewater

    Get PDF
    In recent years, polysulfone-based nanocomposite membranes have been widely used for contaminated water treatment because they comprise properties such as high thermal stability and chemical resistance. In this study, a polysulfone (PSf) nanocomposite membrane was fabricated using the wet-phase inversion method with the fusion of graphene oxide (GO) and alumina (Al2O3) nanoparticles. We also showed that GO-Al2O3 nanoparticles were synthesised successfully by using a one-pot hydrothermal method. The nanocomposite membranes were characterised by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherms, energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and water contact angle. The loading of GO and Al2O3 was investigated to improve the hydrophilic and oil rejection of the matrix membrane. It was shown that by using 1.5 wt.% GO-Al2O3 loaded in polysulfone, ~74% volume of oil was separated from the oil/water emulsion at 0.87 bar and 30 min. This figure was higher than that of the process using the unmodified membrane (PSf/GO) at the same conditions, in which only ~60% volume of oil was separated. The pH, oil/water emulsion concentration, separation time, and irreversible fouling coefficient (FRw) were also investigated. The obtained results suggested that the GO-Al2O3 nanoparticles loaded in the polysulfone membrane might have potential use in oily wastewater treatment applications

    A case of hepatic cyst-induced internal jugular venous thrombosis

    Get PDF
    • Echocardiography can demonstrate hepatic cyst–induced right atrial compression. • Hepatic cyst–induced blood flow stasis can cause internal jugular venous thrombus. • Laparoscopic deroofing of hepatic cysts is a safe and effective treatment

    Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials

    Get PDF
    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center

    Multichannel Photon Counting Lidar Measurements Using USB-based Digital Storage Oscilloscope

    Get PDF
    We present a simple method of making multichannel photon counting measurements of weak lidar signal from large ranges, using commonly available USB-based digital storage oscilloscopes. The single photon pulses from compact photomultiplier tubes are amplified and stretched so that the pulses are large and broad enough to be sampled efficiently by the USB oscilloscopes. A software interface written in Labview is then used to count the number of photon pulses in each of the prescribed time bins to form the histogram of LIDAR signal. This method presents a flexible alternative to the modular multichannel scalers and facilitate the development of sensitive lidar systems
    • …
    corecore