4,670 research outputs found
Exploring the evolutionary paths of the most massive galaxies since z~2
We use Spitzer MIPS data from the FIDEL Legacy Project in the Extended Groth
Strip to analyze the stellar mass assembly of massive (M>10^11 M_sun) galaxies
at z<2 as a function of structural parameters. We find 24 micron emission for
more than 85% of the massive galaxies morphologically classified as disks, and
for more than 57% of the massive systems morphologically classified as
spheroids at any redshift, with about 8% of sources harboring a bright X-ray
and/or infrared emitting AGN. More noticeably, 60% of all compact massive
galaxies at z=1-2 are detected at 24 micron, even when rest-frame optical
colors reveal that they are dead and evolving passively. For spheroid-like
galaxies at a given stellar mass, the sizes of MIPS non-detections are smaller
by a factor of 1.2 in comparison with IR-bright sources. We find that disk-like
massive galaxies present specific SFRs ranging from 0.04 to 0.2 Gyr^-1 at z<1
(SFRs ranging from 1 to 10 M_sun/yr), typically a factor of 3-6 higher than
massive spheroid-like objects in the same redshift range. At z>1, and more
pronouncedly at z>1.3, the median specific SFRs of the disks and spheroids
detected by MIPS are very similar, ranging from 0.1 to 1 Gyr^-1 (SFR=10-200
M_sun/yr). We estimate that massive spheroid-like galaxies may have doubled (at
the most) their stellar mass from star-forming events at z<2: less than 20%
mass increase at 1.7<z<2.0, up to 40% more at 1.1<z<1.7, and less than 20%
additional increase at z<1. Disk-like galaxies may have tripled (at the most)
their stellar mass at z<2 from star formation alone: up to 40% mass increase at
1.7<z<2.0, and less than 180% additional increase below z=1.7 occurred at a
steady rate.Comment: Accepted for publication in ApJ; 10 pages, 5 figures, 1 tabl
Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation
Wind erosion in semi-arid regions is a significant problem for which the sheltering effect of rangeland vegetation is poorly understood. Individual plants may be considered as porous roughness elements which absorb or redistribute the wind's momentum. The saltation threshold is the minimum wind velocity at which soil movement begins. The dependence of the saltation threshold on geometrical parameters of a uniform roughness array was studied in a wind tunnel. Both solid and porous elements were used to determine relationships between canopy structure and the threshold velocity for soil transport. The development of a predictive relation for the influence of vegetation canopy structure on wind erosion of soil is discussed
Discovery of a planetary-sized object in the scattered Kuiper belt
We present the discovery and initial physical and dynamical characterization
of the object 2003 UB313. The object is sufficiently bright that for all
reasonable values of the albedo it is certain to be larger than Pluto.
Pre-discovery observations back to 1989 are used to obtain an orbit with
extremely small errors. The object is currently at aphelion in what appears to
be a typical orbit for a scattered Kuiper belt object except that it is
inclined by about 44 degrees from the ecliptic. The presence of such a large
object at this extreme inclination suggests that high inclination Kuiper belt
objects formed preferentially closer to the sun. Observations from Gemini
Observatory show that the infrared spectrum is, like that of Pluto, dominated
by the presence of frozen methane, though visible photometry shows that the
object is almost neutral in color compared to Pluto's extremely red color. 2003
UB313 is likely to undergo substantial seasonal change over the large range of
heliocentric distances that it travels; Pluto at its current distance is likely
to prove a useful analog for better understanding the range of seasonal changes
on this body.Comment: 9 pages, 1 figur
Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot
Discovery of Temperate Latitude Clouds on Titan
Until now, all the clouds imaged in Titan's troposphere have been found at far southern latitudes (60°-90° south). The occurrence and location of these clouds is thought to be the result of convection driven by the maximum annual solar heating of Titan's surface, which occurs at summer solstice (2002 October) in this south polar region. We report the first observations of a new recurring type of tropospheric cloud feature, confined narrowly to ~40° south latitude, which cannot be explained by this simple insolation hypothesis. We propose two classes of formation scenario, one linked to surface geography and the other to seasonally evolving circulation, which will be easily distinguished with continued observations over the next few years
Direct measurement of the size of 2003 UB313 from the Hubble Space Telescope
We have used the Hubble Space Telescope to directly measure the angular size
of the large Kuiper belt object 2003 UB313. By carefully calibrating the point
spread function of a nearby field star, we measure the size of 2003 UB313 to be
34.31.4 milliarcseconds, corresponding to a diameter of 2400100 km or
a size % larger than Pluto. The V band geometric albedo of 2003 UB313 is
%. The extremely high albedo is consistent with the frosty methane
spectrum, the lack of red coloring, and the lack of observed photometric
variation on the surface of 2003 UB313. Methane photolysis should quickly
darken the surface of 2003 UB313, but continuous evaporation and redeposition
of surface ices appears capable of maintaining the extreme alebdo of this body
Wetware, Hardware, or Software Incapacitation: Observational Methods to Determine When Autonomy Should Assume Control
Control-theoretic modeling of human operator's dynamic behavior in manual control tasks has a long, rich history. There has been significant work on techniques used to identify the pilot model of a given structure. This research attempts to go beyond pilot identification based on experimental data to develop a predictor of pilot behavior. Two methods for pre-dicting pilot stick input during changing aircraft dynamics and deducing changes in pilot behavior are presented This approach may also have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot. With this ability to detect changes in piloting behavior, the possibility now exists to mediate human adverse behaviors, hardware failures, and software anomalies with autono-my that may ameliorate these undesirable effects. However, appropriate timing of when au-tonomy should assume control is dependent on criticality of actions to safety, sensitivity of methods to accurately detect these adverse changes, and effects of changes in levels of auto-mation of the system as a whole
Pilot Preferences on Displayed Aircraft Control Variables
The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness
- …