3,651 research outputs found

    The Remote Field Effect and Its Interpretation

    Get PDF
    The Remote Field Effect (RFE) and the testing method based on it have attracted considerable attention from the research community. The need to explain the apparent discrepancies between the effect and the known electromagnetic field behavior is the reason for this attention

    Assessment of practical applicability and clinical relevance of a commonly used LDL-C polygenic score in patients with severe hypercholesterolemia

    Get PDF
    Background and aims: Low-density lipoprotein cholesterol (LDL-C) levels vary in patients with familial hypercholesterolemia (FH) and can be explained by a single deleterious genetic variant or by the aggregate effect of multiple, common small-effect variants that can be captured in a polygenic score (PS). We set out to investigate the contribution of a previously published PS to the inter-individual LDL-C variation and coronary artery disease (CAD) risk in patients with a clinical FH phenotype. Methods: First, in a cohort of 628 patients referred for genetic FH testing, we evaluated the distribution of a PS for LDL-C comprising 12 genetic variants. Next, we determined its association with coronary artery disease (CAD) risk using UK Biobank data. Results: The mean PS was higher in 533 FH-variant-negative patients (FH/M-) compared with 95 FH-variant carriers (1.02 vs 0.94, p < 0.001). 39% of all patients had a PS equal to the top 20% from a population-based reference cohort and these patients were less likely to carry an FH variant (OR 0.22, 95% CI 0.10–0.48) compared with patients in the lowest 20%. In UK Biobank data, the PS explained 7.4% of variance in LDL-C levels and was associated with incident CAD. Addition of PS to a prediction model using age and sex and LDL-C did not increase the c-statistic for predicting CAD risk. Conclusions: This 12-variant PS was higher in FH/M- patients and associated with incident CAD in UK Biobank data. However, the PS did not improve predictive accuracy when added to the readily available characteristics age, sex and LDL-C, suggesting limited discriminative value for CAD

    Distribution and origin of suspended matter and organic carbon pools in the Tana River Basin, Kenya

    Get PDF
    We studied patterns in organic carbon pools and their origin in the Tana River Basin (Kenya), in February 2008 (dry season), September–November 2009 (wet season), and June–July 2010 (end of wet season), covering the full continuum from headwater streams to lowland mainstream sites. A consistent downstream increase in total suspended matter (TSM, 0.6 to 7058 mg l−1) and particulate organic carbon (POC, 0.23 to 119.8 mg l−1) was observed during all three sampling campaigns, particularly pronounced below 1000m above sea level, indicating that most particulate matter exported towards the coastal zone originated from the mid and low altitude zones rather than from headwater regions. This indicates that the cascade of hydroelectrical reservoirs act as an extremely efficient particle trap. Although 7Be / 210Pbxs ratios/age of suspended sediment do not show clear seasonal variation, the gradual downstream increase of suspended matter during end of wet season suggests its origin is caused by inputs of older sediments from bank erosion and/or river sediment resuspension. During wet season, higher TSM concentrations correspond with relatively young suspended matter, suggesting a contribution from recently eroded material.With the exception of reservoir waters, POC was predominantly of terrestrial origin as indicated by generally high POC : chlorophyll a (POC : Chl a) ratios (up to 41 000). Stable isotope signatures of POC ( 13CPOC) ranged between −32 and −20‰and increased downstream, reflecting an increasing contribution of C4-derived carbon in combination with an expected shift in 13C for C3 vegetation towards the more semi-arid lowlands. 13C values in sediments from the main reservoir (−19.5 to −15.7 ‰) were higher than those found in any of the riverine samples, indicating selective retention of particles associated with C4 fraction. Dissolved organic carbon (DOC) concentrations were highest during the end of wet season (2.1 to 6.9 mg l−1), with stable isotope signatures generally between −28 and −22 ‰. A consistent downstream decrease in % organic carbon (%OC) was observed for soils, riverine sediments, and suspended matter. This was likely due to better preservation of the organic fraction in colder high altitude regions, with loss of carbon during downstream spiraling. 13C values for soil and sediment did not exhibit clear altitudinal patterns, but values reflect the full spectrum from C3-dominated to C4-dominated sites. Very low ratios of organic carbon to mineral surface area (OC : SA) were found in reservoir sediments and suspended matter in the lower Tana River, indicating that these are stable OC pools which have undergone extensive degradation. Overall, our study demonstrates that substantial differences occur in both the quantities and origin of suspended sediments and organic carbon along the river profile in this tropical river basin, as well as seasonal differences in the mechanisms causing such variations.Peer reviewe

    Exploiting Locally Imposed Anisotropies in (Ga,Mn)As: a Non-volatile Memory Device

    Full text link
    Progress in (Ga,Mn)As lithography has recently allowed us to realize structures where unique magnetic anisotropy properties can be imposed locally in various regions of a given device. We make use of this technology to fabricate a device in which we study transport through a constriction separating two regions whose magnetization direction differs by 90 degrees. We find that the resistance of the constriction depends on the flow of the magnetic field lines in the constriction region and demonstrate that such a structure constitutes a non-volatile memory device

    Conceptualizing a distributed, multi-scalar global public sphere through activist communication practices in the World Social Forum

    Get PDF
    This article contributes to debate about how to conceptualize the global public sphere. Drawing on media practice theory and ethnographic research on media activism in the World Social Forum, it shows how ‘global publics’ can be constituted through a diverse range of activist communication practices that complicate both conventional hierarchies of scale and contemporary theorizations of publics as personalized networks. It develops an understanding of the global public sphere as an emergent formation made up of multiple, interlinked publics at different scales and emphasizes the significance of collective communication spaces for actors at the margins of the global network society

    Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection

    Get PDF
    Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor ~18–25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions

    Heterogeneous grain-scale response in ferroic polycrystals under electric field

    Get PDF
    Understanding coupling of ferroic properties over grain boundaries and within clusters of grains in polycrystalline materials is hindered due to a lack of direct experimental methods to probe the behaviour of individual grains in the bulk of a material. Here, a variant of three-dimensional X-ray diffraction (3D-XRD) is used to resolve the non-180?? ferroelectric domain switching strain components of 191 grains from the bulk of a polycrystalline electro-ceramic that has undergone an electric-field-induced phase transformation. It is found that while the orientation of a given grain relative to the field direction has a significant influence on the phase and resultant domain texture, there are large deviations from the average behaviour at the grain scale. It is suggested that these deviations arise from local strain and electric field neighbourhoods being highly heterogeneous within the bulk polycrystal. Additionally, the minimisation of electrostatic potentials at the grain boundaries due to interacting ferroelectric domains must also be considered. It is found that the local grain-scale deviations average out over approximately 10-20 grains. These results provide unique insight into the grain-scale interactions of ferroic materials and will be of value for future efforts to comprehensively model these and related materials at that length-scaleopen

    Relationship between resident workload and self-perceived learning on inpatient medicine wards: a longitudinal study

    Get PDF
    BACKGROUND: Despite recent residency workload and hour limitations, little research on the relationship between workload and learning has been done. We sought to define residents' perceptions of the optimal patient workload for learning, and to determine how certain variables contribute to those perceptions. Our hypothesis was that the relationship between perceived workload and learning has a maximum point (forming a parabolic curve): that either too many or too few patients results in sub-optimal learning. METHODS: Residents on inpatient services at two academic teaching hospitals reported their team and individual patient censuses, and rated their perception of their learning; the patient acuity; case variety; and how challenged they felt. To estimate maximum learning scores, linear regression models with quadratic terms were fit on learning score. RESULTS: Resident self-perceived learning correlated with higher acuity and greater heterogeneity of case variety. The equation of census versus learning score, adjusted for perception of acuity and case mix scores, showed a parabolic curve in some cases but not in others. CONCLUSION: These data suggest that perceived resident workload is complex, and impacted by additional variables including patient acuity and heterogeneity of case variety. Parabolic curves exist for interns with regard to overall census and for senior residents with regard to new admissions on long call days
    corecore