39 research outputs found

    Acute Effects of Nicotine Amplify Accumbal Neural Responses during Nicotine-Taking Behavior and Nicotine-Paired Environmental Cues

    Get PDF
    Nicotine self-administration (SA) is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc) is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg) paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively). Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1) excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2) a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA

    Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors

    Get PDF
    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. © 2013 den Hartog et al

    Plant growth promoting rhizobia: challenges and opportunities

    Get PDF

    Spectral stray light effect on high-temperature measurements using a near-infrared multi-wavelength pyrometer

    No full text
    The spectral stray light is a major, non-negligible error source affecting spectral intensity measurements for optical instruments. The purpose of this study is to investigate the effects of spectral stray light on high-temperature measurements using a near-infrared (1.0-1.65 mu m) multi-wavelength pyrometer. The spectral stray light corrections were measured for the multi-wavelength pyrometer using a pulsed tunable laser for wavelengths from 0.41 mu m to 2.63 mu m. A matrix correction method was then used for the spectral stray light for the multi-wavelength pyrometer. The spectral response characteristics of the pyrometer were calibrated using a standard high-temperature blackbody source. The experimental results show that the spectral response characteristics are approximately identical for different calibration temperatures when the spectral stray light correction is used. The corrections for the spectral stray light significantly improve the accuracy of the multi-wavelength pyrometer at a blackbody calibration temperature which gives a simplified accurate calibration procedure, unlike the temperature calibrations for general optical pyrometers. Temperature measurement tests using a multi-wavelength pyrometer for standard high-temperature source further verified the measurement accuracy of the calibrated pyrometer which also illustrates the necessity of the spectral stray light corrections for the complex optical pyrometer and the applicability of the multi-wavelength algorithm. (C) 2014 Elsevier B.V. All rights reserved

    Bagging and Boosting statistical machine translation systems

    No full text
    In this article we address the issue of generating diversified translation systems from a single Statistical Machine Translation (SMT) engine for system combination. Unlike traditional approaches, we do not resort to multiple structurally different SMT systems, but instead directly learn a strong SMT system from a single translation engine in a principled way. Our approach is based on Bagging and Boosting which are two instances of the general framework of ensemble learning. The basic idea is that we first generate an ensemble of weak translation systems using a base learning algorithm, and then learn a strong translation system from the ensemble. One of the advantages of our approach is that it can work with any of current SMT systems and make them stronger almost "for free". Beyond this, most system combination methods are directly applicable to the proposed framework for generating the final translation system from the ensemble of weak systems. We evaluate our approach on Chinese-English translation in three state-of-the-art SMT systems, including a phrase-based system, a hierarchical phrase-based system and a syntax-based system. Experimental results on the NIST MT evaluation corpora show that our approach leads to significant improvements in translation accuracy over the baselines. More interestingly, it is observed that our approach is able to improve the existing system combination systems. The biggest improvements are obtained by generating weak systems using Bagging/Boosting, and learning the strong system using a state-of-the-art system combination method. (C) 2012 Elsevier B.V. All rights reserved

    Conflict control of children with different intellectual levels: An ERP study

    No full text
    Conflict control is an important cognitive ability in human behavioral regulation. The Eriksen flanker task was employed to explore the neural correlation between conflict control and intelligence with the aid of event-related potential (ERP) techniques. Two groups of early adolescents with different intellectual levels participated in the current study (an intellectually gifted group of 20 children vs. an intellectually average group of 21 children, with mean scores of 43 vs. 35.7 in Cattell's Culture Fair Test, respectively). Behavioral results indicate that the gifted children had better conflict control performances, with increased accuracy and faster response speeds than the intellectually average children. Electrophysiological results further show that the gifted children had more efficient N2 activations during conflict monitoring processing, faster P3 responses over frontal regions, and stronger P3 activations over central-parietal regions during attentional control processing. The difference waveform analysis showed that the gifted children had the weakest N2d activations when elicited by multiple conflicts. N2d amplitudes can be used to distinguish a stimulus conflict from a response conflict, and P3d amplitudes can be used to separate multiple conflicts from a single conflict. The results support the neural efficiency hypothesis of intelligence and shed light on the close relationship between conflict control ability and human intelligence. (C) 2010 Elsevier Ireland Ltd. All rights reserved
    corecore