2,599 research outputs found

    A genome-wide scan for common alleles affecting risk for autism

    Get PDF
    Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C

    Mitochondrial dynamics and quality control in Huntington's disease

    Get PDF
    Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine expansion mutations in the huntingtin protein. Despite its ubiquitous distribution, expression of mutant huntingtin (mHtt) is particularly detrimental to medium spiny neurons within the striatum. Mitochondrial dysfunction has been associated with HD pathogenesis. Here we review the current evidence for mHtt-induced abnormalities in mitochondrial dynamics and quality control, with a particular focus on brain and neuronal data pertaining to striatal vulnerability. We address mHtt effects on mitochondrial biogenesis, protein import, complex assembly, fission and fusion, mitochondrial transport, and on the degradation of damaged mitochondria via autophagy (mitophagy). For an integrated perspective on potentially converging pathogenic mechanisms, we also address impaired autophagosomal transport and abnormal mHtt proteostasis in HD

    Simulations of extensional flow in microrheometric devices

    Get PDF
    We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels

    Targeting the proteostasis network in Huntington's disease

    Get PDF
    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion mutation in the huntingtin protein. Expansions above 40 polyglutamine repeats are invariably fatal, following a symptomatic period characterised by choreiform movements, behavioural abnormalities, and cognitive decline. While mutant huntingtin (mHtt) is widely expressed from early life, most patients with HD present in mid-adulthood, highlighting the role of ageing in disease pathogenesis. mHtt undergoes proteolytic cleavage, misfolding, accumulation, and aggregation into inclusion bodies. The emerging model of HD pathogenesis proposes that the chronic production of misfolded mHtt overwhelms the chaperone machinery, diverting other misfolded clients to the proteasome and the autophagy pathways, ultimately leading to a global collapse of the proteostasis network. Multiple converging hypotheses also implicate ageing and its impact in the dysfunction of organelles as additional contributing factors to the collapse of proteostasis in HD. In particular, mitochondrial function is required to sustain the activity of ATP-dependent chaperones and proteolytic machinery. Recent studies elucidating mitochondria-endoplasmic reticulum interactions and uncovering a dedicated proteostasis machinery in mitochondria, suggest that mitochondria play a more active role in the maintenance of cellular proteostasis than previously thought. The enhancement of cytosolic proteostasis pathways shows promise for HD treatment, protecting cells from the detrimental effects of mHtt accumulation. In this review, we consider how mHtt and its post translational modifications interfere with protein quality control pathways, and how the pharmacological and genetic modulation of components of the proteostasis network impact disease phenotypes in cellular and in vivo HD models

    Pollen storage by stingless bees as an environmental marker for metal contamination : spatial and temporal distribution of metal elements.

    Get PDF
    Since the middle of the 20th century, human activities have led to overall ecosystem contamination and to major modifications in landscape structure and composition. Mining activities represent a major source of environmental contamination by metal residues. The objective of our study was to evaluate the presence of heavy metals and other elements on stingless bee pollen, and compare them to samples of Suspended Particulate Material (SPM) in five points a Mineral Province, in Brazil. More than 50 elements were identified by ICP-OES and ICP-MS, after microwave digestion. Overall, we found a strong relation among elements present on pollen and SPM. Samples from the four areas exhibited higher levels of minerals compared to the reference site. Mineral levels varied widely within the two seasonal periods. Some elements, like Pb, Cd, As, Cu, Zn, and Fe were found at levels considered potentially toxic to human health. Pollen stored by stingless bees was a successful bioindicator, and demonstrated the value of quantitative ecological information for detecting air pollution

    A new thiocyanoacetamide (2-cyano-2-p-nitrophenyl-N-benzylthioamide) reduces doxorubicin-induced in vitro toxicity in Sertoli cells by decreasing apoptosis and autophagy

    Get PDF
    Despite conflicting data on doxorubicin (DOX) reproductive toxicity, its chemotherapeutic potential sustains its use to treat different types of cancer. This work was designed to study the protective effect of a newly synthesized thiocyanoacetamide (TA), in comparison with selenium (Se), against doxorubicin-induced in vitro toxicity in rat Sertoli cells (SCs). DOX was administered alone or in combination with Se or TA. The possible protective role of increased concentrations of TA (0.25, 0.5 and 1 mM) or Se (12, 25 and 50 mu M) on SCs was tested against 1 mu M of DOX. From this screening, only the least toxic doses of TA and Se were used for further analysis. DOX cytotoxicity, as well as its impact on SCs viability, mitochondria) membrane potential (Delta Psi(m)), oxidative stress biomarkers, apoptosis and autophagy were assessed. Our results showed that DOX exerted its cytotoxic effect through a significant increase in cell death. DOX-mediated cell death was not related to autophagy nor to an overproduction of reactive oxygen species. It was rather due to apoptosis, as shown by the increased number of apoptotic cells and increased activity of caspase-3, or due to necrosis, as shown by the increase in lactate dehydrogenase (LDH) extracellular activity. Still, Bax and Bcl-2 protein expression levels, as well as Delta Psi(m) were not altered by the different treatments. Some individual doses of Se or TA induced a significant toxicity in SCs, however, when combined with DOX, there was a decrease in cell death, LDH extracellular activity, number of apoptotic cells and caspase-3 activity. Overall, our results indicate that DOX-mediated apoptosis in cultured SCs can possibly be averted through its association with specific doses of Se or TA. Nevertheless, TA showed a higher efficiency than Se in reducing DOX-induced toxicity in SCs by decreasing not only apoptosis, but also necrosis and autophagy. (C) 2019 Elsevier Inc. All rights reserved

    An overview of the current status of CMB observations

    Full text link
    In this paper we briefly review the current status of the Cosmic Microwave Background (CMB) observations, summarising the latest results obtained from CMB experiments, both in intensity and polarization, and the constraints imposed on the cosmological parameters. We also present a summary of current and future CMB experiments, with a special focus on the quest for the CMB B-mode polarization.Comment: Latest CMB results have been included. References added. To appear in "Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11 July, 200
    corecore