31 research outputs found

    Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    Get PDF
    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality

    Deciphering the Pathobiome: Intra- and Interkingdom Interactions Involving the Pathogen Erysiphe alphitoides

    No full text
    Plant-inhabiting microorganisms interact directly with each other, forming complex microbial interaction networks. These interactions can either prevent or facilitate the establishment of new microbial species, such as a pathogen infecting the plant. Here, our aim was to identify the most likely interactions between Erysiphe alphitoides, the causal agent of oak powdery mildew, and other foliar microorganisms of pedunculate oak (Quercus robur L.). We combined metabarcoding techniques and a Bayesian method of network inference to decipher these interactions. Our results indicate that infection with E. alphitoides is accompanied by significant changes in the composition of the foliar fungal and bacterial communities. They also highlight 13 fungal operational taxonomic units (OTUs) and 13 bacterial OTUs likely to interact directly with E. alphitoides. Half of these OTUs, including the fungal endophytes Mycosphaerella punctiformis and Monochaetia kansensis, could be antagonists of E. alphitoides according to the inferred microbial network. Further studies will be required to validate these potential interactions experimentally. Overall, we showed that a combination of metabarcoding and network inference, by highlighting potential antagonists of pathogen species, could potentially improve the biological control of plant diseases
    corecore