9 research outputs found

    AFLP analysis reveals high genetic diversity but low population structure in Coccidioides posadasiiisolates from Mexico and Argentina

    Get PDF
    BACKGROUND: Coccidioides immitis and C. posadasii cause coccidioidomycosis, a disease that is endemic to North and South America, but for Central America, the incidence of coccidioidomycosis has not been clearly established. Several studies suggest genetic variability in these fungi; however, little definitive information has been discovered about the variability of Coccidioides fungi in Mexico (MX) and Argentina (AR). Thus, the goals for this work were to study 32 Coccidioides spp. isolates from MX and AR, identify the species of these Coccidioides spp. isolates, analyse their phenotypic variability, examine their genetic variability and investigate the Coccidioides reproductive system and its level of genetic differentiation. METHODS: Coccidioides spp. isolates from MX and AR were taxonomically identified by phylogenetic inference analysis using partial sequences of the Ag2/PRA gene and their phenotypic characteristics analysed. The genetic variability, reproductive system and level of differentiation were estimated using AFLP markers. The level of genetic variability was assessed measuring the percentage of polymorphic loci, number of effective allele, expected heterocygosity and Index of Association (I(A)). The degree of genetic differentiation was determined by AMOVA. Genetic similarities among isolates were estimated using Jaccard index. The UPGMA was used to contsruct the corresponding dendrogram. Finally, a network of haplotypes was built to evaluate the genealogical relationships among AFLP haplotypes. RESULTS: All isolates of Coccidioides spp. from MX and AR were identified as C. posadasii. No phenotypic variability was observed among the C. posadasii isolates from MX and AR. Analyses of genetic diversity and population structure were conducted using AFLP markers. Different estimators of genetic variability indicated that the C. posadasii isolates from MX and AR had high genetic variability. Furthermore, AMOVA, dendrogram and haplotype network showed a small genetic differentiation among the C. posadasii populations analysed from MX and AR. Additionally, the I(A) calculated for the isolates suggested that the species has a recombinant reproductive system. CONCLUSIONS: No phenotypic variability was observed among the C. posadasii isolates from MX and AR. The high genetic variability observed in the isolates from MX and AR and the small genetic differentiation observed among the C. posadasii isolates analysed, suggest that this species could be distributed as a single genetic population in Latin America

    Genetic structure analysis of Eufriesea violacea (Hymenoptera, Apidae) populations from southern Brazilian Atlantic rainforest remnants

    No full text
    Random amplified polymorphic DNA (RAPD) markers were used to analyze the genetic structure of Eufriesea violacea populations in three fragments (85.47, 832.58 and 2800 ha) of Atlantic rainforest located in the north of the Brazilian state of Paraná. A total of twelve primers produced 206 loci, of which 129 were polymorphic (95% criterion). The proportions of polymorphic loci in each population ranged from 57.28% to 59.2%, revealing very similar levels of genetic variability in the groups of bees from each fragment. Unbiased genetic distances between groups ranged from 0.0171 to 0.0284, the smallest genetic distance occurring between bees from the two larger fragments. These results suggest that the E. violacea populations from the three fragments have maintained themselves genetically similar to native populations of this species originally present in northern Paraná

    Population structure and diversity of the pathogenic fungus Aspergillus fumigatus isolated from different sources and geographic origins

    No full text
    Fifty-five clinical and environmental Aspergillus fumigatus isolates from Mexico, Argentina, France and Peru were analyzed to determine their genetic variability, reproductive system and level of differentiation using amplified fragment length polymorphism markers. The level of genetic variability was assessed by measuring the percentage of polymorphic loci, number of effective alleles, expected heterozygocity and by performing an association index test (I A). The degree of genetic differentiation and variation was determined using analysis of molecular variance at three levels. Using the paired genetic distances, a dendrogram was built to detect the genetic relationship among alleles. Finally, a network of haplotypes was constructed to determine the geographic relationship among them. The results indicate that the clinical isolates have greater genetic variability than the environmental isolates. The I A of the clinical and environmental isolates suggests a recombining population structure. The genetic differentiation among isolates and the dendrogram suggest that the groups of isolates are different. The network of haplotypes demonstrates that the majority of the isolates are grouped according to geographic origin
    corecore