45 research outputs found

    At the Biological Modeling and Simulation Frontier

    Get PDF
    We provide a rationale for and describe examples of synthetic modeling and simulation (M&S) of biological systems. We explain how synthetic methods are distinct from familiar inductive methods. Synthetic M&S is a means to better understand the mechanisms that generate normal and disease-related phenomena observed in research, and how compounds of interest interact with them to alter phenomena. An objective is to build better, working hypotheses of plausible mechanisms. A synthetic model is an extant hypothesis: execution produces an observable mechanism and phenomena. Mobile objects representing compounds carry information enabling components to distinguish between them and react accordingly when different compounds are studied simultaneously. We argue that the familiar inductive approaches contribute to the general inefficiencies being experienced by pharmaceutical R&D, and that use of synthetic approaches accelerates and improves R&D decision-making and thus the drug development process. A reason is that synthetic models encourage and facilitate abductive scientific reasoning, a primary means of knowledge creation and creative cognition. When synthetic models are executed, we observe different aspects of knowledge in action from different perspectives. These models can be tuned to reflect differences in experimental conditions and individuals, making translational research more concrete while moving us closer to personalized medicine

    Longer hospital stay is associated with higher rates of tuberculosis-related morbidity and mortality within 12 months after discharge in a referral hospital in Sub-Saharan Africa

    Full text link
    BACKGROUND: Nosocomial transmission of pulmonary tuberculosis (PTB) is a problem in resource-limited settings. However, the degree of TB exposure and the intermediate- and long-term morbidity and mortality of hospital-associated TB is unclear. In this study we determined: 1) the nature, patterns and intensity of TB exposure occurring in the context of current TB cohorting practices in medical centre with a high prevalence of TB and HIV; 2) the one-year TB incidence after discharge; and 3) one-year TB-related mortality after hospital discharge. METHODS: Factors leading to nosocomial TB exposure were collected daily over a 3-month period. Patients were followed for 1-year after discharge. TB incidence and mortality were calculated and logistic regression was used to determine the factors associated with TB incidence and mortality during follow up. RESULTS: 1,094 patients were admitted to the medical wards between May 01 and July 31, 2010. HIV was confirmed in 690/1,094 (63.1%) of them. A total of 215/1,094 (19.7%) patients were diagnosed with PTB and 178/1,094 (16.3%) patients died during the course of their hospitalization; 12/178 (6.7%) patients died from TB-related complications. Eventually, 916 (83.7%) patients were discharged and followed for one year after it. Of these, 51 (5.6%) were diagnosed with PTB during the year of follow up (annual TB rate of 3,712 cases per 100,000 person per year). Overall, 57/916 (6.2%) patients died during the follow up period, of whom 26/57 (45.6%) died from confirmed TB. One-year TB incidence rate and TB-associated mortality were associated with the number of days that the patient remained hospitalized, the number of days spent in the cohorting bay (regardless of whether the patient was eventually diagnosed with TB or not), and the number and proximity to TB index cases. There was no difference in the performance of each of these 3 measurements of nosocomial TB exposure for the prediction of one-year TB incidence. CONCLUSION: Substantial TB exposure, particularly among HIV-infected patients, occurs in nosocomial settings despite implementation of cohorting measures. Nosocomial TB exposure is strongly associated with one-year TB incidence and TB-related mortality. Further studies are needed to identify strategies to reduce such exposure among susceptible patients

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Figuratively Speaking

    No full text

    Knowledge Science

    No full text
    corecore