32 research outputs found

    Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE)

    Get PDF
    Liver function tests (LFTs) are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF) test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs

    Multimodal Stimulation of Colorado Potato Beetle Reveals Modulation of Pheromone Response by Yellow Light

    Get PDF
    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB), Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms

    Of yeast, mice and men: MAMs come in two flavors

    Full text link

    An Improved Covariate for Projecting Future Rainfall Extremes?

    Get PDF
    Projection of extreme rainfall under climate change remains an area of considerable uncertainty. In the absence of geographically consistent simulations of extreme rainfall for the future, alternatives relying on physical relationships between a warmer atmosphere and its moisture carrying capacity are projected, scaling with a known atmospheric covariate. The most common atmospheric covariate adopted is surface air temperature, as it exhibits great consistency across climate model simulations into the future and, as per the Clausius-Clapeyron relationship, has a well-established link to atmospheric moisture capacity. However, empirical assessments of this relationship show that it varies with latitude, surface temperature, atmospheric temperature, and other factors, suggesting there may be more stable “global” atmospheric covariates that could be used instead. We argue that a better-suited covariate would be one that captures the relationship between extreme rainfall and temperature but exhibits greater consistency in the relationship across regions as well as climatic zones. Our analysis identifies plausible atmospheric indicators of changes to future extreme rainfall, which now proliferate literature and compare their suitability based on the variability they exhibit across multiple geographical, topographic, and climatic zones within Australia. It is shown that surface air temperature exhibits a regionally inconsistent relationship with extreme rainfall and hence is not suitable for projecting to future conditions. The study identified integrated water vapor and surface dew point temperature as promising alternatives, with the former showing greater consistency in space but at the cost of reduced temporal coverage

    An Improved Covariate for Projecting Future Rainfall Extremes?

    Get PDF
    Projection of extreme rainfall under climate change remains an area of considerable uncertainty. In the absence of geographically consistent simulations of extreme rainfall for the future, alternatives relying on physical relationships between a warmer atmosphere and its moisture carrying capacity are projected, scaling with a known atmospheric covariate. The most common atmospheric covariate adopted is surface air temperature, as it exhibits great consistency across climate model simulations into the future and, as per the Clausius-Clapeyron relationship, has a well-established link to atmospheric moisture capacity. However, empirical assessments of this relationship show that it varies with latitude, surface temperature, atmospheric temperature, and other factors, suggesting there may be more stable “global” atmospheric covariates that could be used instead. We argue that a better-suited covariate would be one that captures the relationship between extreme rainfall and temperature but exhibits greater consistency in the relationship across regions as well as climatic zones. Our analysis identifies plausible atmospheric indicators of changes to future extreme rainfall, which now proliferate literature and compare their suitability based on the variability they exhibit across multiple geographical, topographic, and climatic zones within Australia. It is shown that surface air temperature exhibits a regionally inconsistent relationship with extreme rainfall and hence is not suitable for projecting to future conditions. The study identified integrated water vapor and surface dew point temperature as promising alternatives, with the former showing greater consistency in space but at the cost of reduced temporal coverage

    Rom-1 is required for rod photoreceptor viability and regulation of disk morphogenesis

    No full text
    The homologous membrane proteins Rom-1 and peripherin-2 are localized to the disk rims of photoreceptor outer segments (OSs), where they associate as tetramers and larger oligomers1, 2, 3. Disk rims are thought to be critical for disk morphogenesis, OS renewal4 and the maintenance of OS structure5, but the molecules which regulate these processes are unknown. Although peripherin-2 is known to be required for OS formation (because Prph2−/− mice do not form OSs; ref. 6), and mutations in RDS (the human homologue of Prph2) cause retinal degeneration7, the relationship of Rom-1 to these processes is uncertain. Here we show that Rom1−/− mice form OSs in which peripherin-2 homotetramers are localized to the disk rims, indicating that peripherin-2 alone is sufficient for both disk and OS morphogenesis. The disks produced in Rom1−/− mice were large, rod OSs were highly disorganized (a phenotype which largely normalized with age) and rod photoreceptors died slowly by apoptosis. Furthermore, the maximal photoresponse of Rom1−/− rod photoreceptors was lower than that of controls. We conclude that Rom-1 is required for the regulation of disk morphogenesis and the viability of mammalian rod photoreceptors, and that mutations in human ROM1 may cause recessive photoreceptor degeneration
    corecore