25 research outputs found

    Maximal regularity for non-autonomous equations with measurable dependence on time

    Get PDF
    In this paper we study maximal LpL^p-regularity for evolution equations with time-dependent operators AA. We merely assume a measurable dependence on time. In the first part of the paper we present a new sufficient condition for the LpL^p-boundedness of a class of vector-valued singular integrals which does not rely on H\"ormander conditions in the time variable. This is then used to develop an abstract operator-theoretic approach to maximal regularity. The results are applied to the case of mm-th order elliptic operators AA with time and space-dependent coefficients. Here the highest order coefficients are assumed to be measurable in time and continuous in the space variables. This results in an Lp(Lq)L^p(L^q)-theory for such equations for p,q(1,)p,q\in (1, \infty). In the final section we extend a well-posedness result for quasilinear equations to the time-dependent setting. Here we give an example of a nonlinear parabolic PDE to which the result can be applied.Comment: Application to a quasilinear equation added. Accepted for publication in Potential Analysi
    corecore