349 research outputs found

    Magnetoelectric Properties of (Ca1x_{1-x}Srx_{x})2_2CoSi2_2O7_7 Crystals

    Full text link
    We have investigated the magnetoelectric properties of (Ca1x_{1-x}Srx_{x})2_2CoSi2_2O7_7 (0x10\leq x\leq 1) crystals with a quasi-two-dimensional structure. In Ca2_2CoSi2_2O7_7 (x=0x=0), a canted antiferromagnetic transition occurs at 5.6 K. The transition temperature TNT_{\rm N} is increasing with increasing Sr concentration, and the rises of the magnetization and dielectric constant become larger. Since the dielectric constant shows large change at TNT_{\rm N} and the magnetocapacitance effect is observed below TNT_{\rm N}, a coupling between the magnetism and dielectricity is strong in (Ca1x_{1-x}Srx_{x})2_2CoSi2_2O7_7. The positive magnetocapacitance is reduced by Sr substitution, and is not observed in x0.5x\geq 0.5. Namely, the compound of x0.5x\geq 0.5 does not show the magnetic-field-induced electric polarization. On the other hand, the negative magnetocapacitance is enhanced by Sr substitution.Comment: 4 pages, 2figures, proceeding of International Conference on Magnetism 200

    Gigantic magnetoelectric effect caused by magnetic-field-induced canted antiferromagnetic-paramagnetic transition in quasi-two-dimensional Ca2_2CoSi2_2O7_7 crystal

    Full text link
    We have investigated the magnetic and dielectric properties of Ca2_2CoSi2_2O7_7 crystal. The dielectricity and magnetism of Ca2_2CoSi2_2O7_7 are strongly coupled below a canted antiferromagnetic transition temperature (TNT_{\rm N}): Magnetic fields induce electric polarization below TNT_{\rm N}. Interestingly, the magnetic-field-induced electric polarization is detected even without poling electric fields. Below TNT_{\rm N}, a canted antiferromagnetic-paramagnetic transition is induced by magnetic fields. The large magnetocapacitance is observed around TNT_{\rm N}. The origin of the large magnetocapacitance is due to the magnetic-field-induced the canted antiferromagnetic-paramagnetic transition.Comment: 3 pages, 3 figures. accepted to Applied Physics Letter

    Fusion of Sendai virus with the target cell membrane is required for T cell cytotoxicity

    Get PDF
    INFECTION of mice with viruses can generate cytotoxic T lymphocytes (CTL) which show restricted specificity for target cell lysis. Specific lysis requires that the virus used to prime the target cells must be of the same type as that used to sensitise the CTL, and that both target and CTL cells must express the same major histocompatability complex (MHC) gene product(s). The nature of the viral gene product(s) and their interaction with the MHC gene product(s) have been the subject of recent stud1−5. Previously we used Sendai virus to show that lysable target cells can be obtained using membrane vesicles which contain only the viral glycoproteins, indicating that these may be the specific viral gene products involved in target formation5. Sendai virus contains two glycoproteins—the haemagglutinin-neuraminidase (HANA) which promotes attachment of virus to cells and the fusion protein (F) which is involved in subsequent virus cell fusion7−9. Both activities are necessary for insertion of these viral glycoproteins into the plasma membrane of the cell10. In this letter we suggest that the insertion of the viral glycoproteins into the cell membrane is an essential step in target cell formation since we can show that virus containing an inactive fusion protein precursor (F0) cannot elicit T cell cytotoxicity unless the fusion activity is generated by proteolytic cleavage of the precursor. Sugamura et al. 6 have suggested that it is primarily the F glycoprotein of the Sendai virus envelope which is essential for the formation of the target antigen, as virus lacking the functional activities of F following trypsin digestion was inactive in priming target cells for T cell killing. However, we show that proteolytic inactivation of either of the two glycoproteins (F or HANA) of virus used to prime target cells will abolish the cytotoxic response

    Persistent and Reversible Phase Control in GdMnO3_3 near the Phase Boundary

    Full text link
    We have investigated temperature and magnetic-field dependence of dielectric properties in the orthorhombic GdMnO3_3 single crystal which is located near the phase boundary between the ferroelectric/spiral-antiferromagnetic phase and the paraelectric/AA-type-antiferromagnetic one. In this compound, strong phase competition between these two phases results in a unique phase diagram with large temperature and magnetic-field hystereses. Based on the phase diagram, we have successfully demonstrated the persistent and reversible phase switching between them by application of magnetic fields.Comment: 4 pages, 2 figures, proceeding of 25th International Conference on Low Temperature Physics LT2

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    Significant nutrient consumption in the dark subsurface layer during a diatom bloom: a case study on Funka Bay, Hokkaido, Japan

    Get PDF
    We conducted repetitive observations in Funka Bay, Hokkaido, Japan, on 15 February, 4 and 15 March, and 14 April 2019. The diatom spring bloom peaked on 4 March and started declining on 15 March. Funka Bay winter water remained below 30 m depth, which was below the surface mixed-layer and dark-layer depth (0.1 % of the surface photosynthetically active radiation, PAR, depth) on 4 and 15 March. In the subsurface layer at depths of 30–50 m, concentrations of NO3-, PO43-, and Si(OH)4 decreased by half between these dates, even in the dark. Incubation experiments using the diatom Thalassiosira nordenskioeldii showed that this diatom could consume added nutrients in the dark at substantial rates after pre-culturing to deplete nutrients. Incubation experiments using natural seawater collected in the growing phase of the bloom on 8 March 2022 also showed that nutrient-depleted phytoplankton could consume added nutrients in the dark. We excluded three physical process – water mixing, diffusive transport, and subduction – as possible main reasons for the decrease in nutrients in the subsurface layer. We conclude that the nutrient reduction in the subsurface layer (30–50 m) between 4 and 15 March 2019 could be explained by nutrient consumption by diatoms in the dark in that layer.</p
    corecore