31,824 research outputs found

    Quark matter equation of state and stellar properties

    Full text link
    In this paper we study strange matter by investigating the stability window within the QMDD model at zero temperature and check that it can explain the very massive pulsar recently detected. We compare our results with the ones obtained from the MIT bag model and see that the QMDD model can explain larger masses, due to the stiffening of the equation of state

    Stability windows for proto-quark stars

    Full text link
    We investigate the existence of possible stable strange matter and related stability windows at finite temperature for different models that are generally applied to describe quark stars, namely, the quark-mass density dependent model, the MIT bag model and the Nambu-Jona-Lasinio model. We emphasize that, although the limits for stable strange matter depend on a comparison with the ground state of 56Fe, which is a zero temperature state, the quantity that has to be used in the search for strange matter in proto-quark stars is the free energy and we analyze stability windows up to temperatures of the order of 40 MeV. The effects of strong magnetic fields on stability windows are computed and the resulting mass-radius relations for different stages of the proto-quark star are analyzed.Comment: Published versio

    Exploring Organizational Communication (Micro) History Through Network Connections

    Get PDF
    In light of the 100th anniversary of the National Communication Association, the following essay offers an initial look at the communication subdiscipline of organizational communication and its development over the past seven-plus decades. As part of this review, we advocate the use of network methods as a microhistory analytic tool to explore the vast number of connections, both between people and research interests, generated as the discipline developed from its humble beginnings. This work represents a small sample of the greater Organizational Communication Genealogy Project. This larger effort seeks to create a detailed review of the discipline as it explores the relationships between advisors and advisees, the development of dissertation and current research topics, the collaborative network of coauthorship, and the contributions of individual scholars through the analysis of interview data, narratives, and historical documents

    Characterisation of a candidate dual AGN

    Get PDF
    We present Chandra and optical observations of a candidate dual AGN discovered serendipitously while searching for recoiling black holes via a cross-correlation between the serendipitous XMM source catalog (2XMMi) and SDSS-DR7 galaxies with a separation no larger than ten times the sum of their Petrosian radii. The system has a stellar mass ratio M1_{1}/M2≈0.7_{2}\approx 0.7. One of the galaxies (Source 1) shows clear evidence for AGN activity in the form of hard X-ray emission and optical emission-line diagnostics typical of AGN ionisation. The nucleus of the other galaxy (Source 2) has a soft X-ray spectrum, bluer colours, and optical emission line ratios dominated by stellar photoionisation with a "composite" signature, which might indicate the presence of a weak AGN. When plotted on a diagram with X-ray luminosity vs [OIII] luminosity both nuclei fall within the locus defined by local Seyfert galaxies. From the optical spectrum we estimate the electron densities finding n1<27_{1} < 27 e−^{-} cm−3^{-3} and n2≈200_{2} \approx 200 e−^{-} cm−3^{-3}. From a 2D decomposition of the surface brightness distribution we infer that both galaxies host rotationally supported bulges (Sersic index <1< 1). While the active nature of Source 1 can be established with confidence, whether the nucleus of Source 2 is active remains a matter of debate. Evidence that a faint AGN might reside in its nucleus is, however, tantalising.Comment: 16 pages, 9 figures. Accepted for publication on MNRAS. Comments welcom

    Chandra observations of the millisecond X-ray pulsar IGR J00291+5934 in quiescence

    Get PDF
    In this Paper we report on our analysis of three Chandra observations of the accretion-powered millisecond X-ray pulsar IGR J00291+5934 obtained during the late stages of the 2004 outburst. We also report the serendipitous detection of the source in quiescence by ROSAT during MJD 48830-48839. The detected 0.3-10 keV source count rates varied significantly between the Chandra observations from (7.2+-1.2)x10^-3, (6.8+-0.9)x10^-3, and (1.4+-0.1)x10^-2 counts per second for the 1st, 2nd, and 3rd Chandra observation, on MJD 53371.88, 53383.99, and 53407.57, respectively. The count rate for the 3rd observation is 2.0+-0.4 times as high as that of the average of the first two observations. The unabsorbed 0.5-10 keV source flux for the best-fit power-law model to the source spectrum was (7.9+-2.5)x10^-14, (7.3+-2.0)x10^-14, and (1.17+-0.22)x10^-13 erg cm^-2 s^-1 for the 1st, 2nd, and 3rd Chandra observation, respectively. We find that this source flux is consistent with that found by ROSAT [~(5.4+-2.4)x10^-14 erg cm^-2 s^-1]. Under the assumption that the interstellar extinction, N_H, does not vary between the observations, we find that the blackbody temperature during the 2nd Chandra observation is significantly higher than that during the 1st and 3rd observation. Furthermore, the effective temperature of the neutron star derived from fitting an absorbed blackbody or neutron star atmosphere model to the data is rather high in comparison with many other neutron star soft X-ray transients in quiescence, even during the 1st and 3rd observation. If we assume that the source quiescent luminosity is similar to that measured for two other accretion powered millisecond pulsars in quiescence, the distance to IGR J00291+5934 is 2.6-3.6 kpc.Comment: 7 pages, 3 Figures, accepted for publication in MNRA

    Time-resolved spectroscopy of the pulsating CV GW Lib

    Get PDF
    We present time-resolved optical spectroscopy of the dwarf nova GW Librae during its rare 2007 April superoutburst and compare these with quiescent epochs. The data provide the first opportunity to track the evolution of the principal spectral features. In the early stages of the outburst, the optically thick disc dominates the optical and the line components show clear orbital radial velocity excursions. In the course of several weeks, optically thin regions become more prominent as strong emission lines replace the broad disc absorption. Post-outburst spectroscopy covering the I band illustrates the advantages of Ca II relative to the commonly used Balmer lines when attempting to constrain binary parameters. Due to the lower ionization energy combined with smaller thermal and shear broadening of these lines, a sharp emission component is seen to be moving in between the accretion disc peaks in the Ca II line. No such component is visible in the Balmer lines. We interpret this as an emission component originating on the hitherto unseen mass donor star. This emission component has a mean velocity of similar to -15 +/- 5 km s(-1) which is associated with the systemic velocity., and a velocity semi-amplitude of K-em = 82.2 +/- 4.9 km s(-1). Doppler tomography reveals an asymmetric accretion disc, with the S-wave mapping to a sharp spot in the tomogram with a velocity consistent to what is obtained with line profile fitting. A centre of symmetry analysis of the disc component suggests a very small value for the WD orbital velocity K-1 as is also inferred from double Gaussian fits to the spectral lines. While our conservative dynamical limits place a hard upper limit on the binary mass ratio of q < 0.23, we favour a significantly lower value near q similar to 0.06. Pulsation modelling suggests a white dwarf mass similar to 1 M-circle dot. This, paired with a low-mass donor, near the empirical sequence of an evolved cataclysmic variable close to the period bounce, appears to be consistent with all the observational constraints to date
    • …
    corecore