6 research outputs found

    A comparative analysis of the causes of air pollution in three cities of the Danube region: implications for the implementation of the air quality directives

    Get PDF
    The causes of air pollution in three cities of the Danube region (Budapest, Sofia and Zagreb) were studied using datasets of measurements and modelling tools. The contributions from different activity sectors, including natural sources and their geographical origin were quantified. It was observed that most of the pollutants are emitted locally. However, the medium to long range transport may be also considerable. On the basis of the output of the source identification, a series of measures were proposed to deal wtih the pollution problem at local, national and international levels.JRC.H.2-Air and Climat

    Combined SEM/EDX and micro-Raman spectroscopy analysis of uranium minerals from a former uranium mine

    Get PDF
    Samples of the secondary uranium minerals collected in the abandoned uranium mine at Pecs (Hungary) were investigated by two micro-techniques: scanning electron microscopy (SEM/EDX) and micro-Raman spectroscopy (MRS). They were applied to locate U-rich particles and identify the chemical form and oxidation state of the uranium compounds. The most abundant mineral was a K and/or Na uranyl sulphate (zippeite group). U(VI) was also present in the form of a trioxide; evidently in much lower content.than sulphate. Few particles with U3O8 and uraninite (primary mineral exploited formerly in this mine) were also detected. This research has shown the successful application of micro-Raman spectroscopy for the identification of uranyl mineral species on the level of individual particles

    Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: the cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria)

    No full text
    The contribution of main PM pollution sources and their geographic origin in three urban sites of the Danube macro-region (Zagreb, Budapest and Sofia) were determined by combining receptor and Lagrangian models. The source contribution estimates were obtained with the Positive Matrix Factorization (PMF) receptor model and the results were further examined using local wind data and backward trajectories obtained with FLEXPART. Potential Source Contribution Function (PSCF) analysis was applied to identify the geographical source areas for the PM sources subject to long-range transport. Gas-to-particle transformation processes and primary emissions from biomass burning are the most important contributors to PM in the studied sites followed by re-suspension of soil (crustal material) and traffic. These four sources can be considered typical of the Danube macro-region because they were identified in all the studied locations. Long-range transport was observed of: a) sulphate-enriched aged aerosols, deriving from SO2 emissions in combustion processes in the Balkans and Eastern Europe and b) dust from the Saharan and Karakum deserts. The study highlights that PM pollution in the studied urban areas of the Danube macro-region is the result of both local sources and long-range transport from both EU and no-EU areas.JRC.C.5-Air and Climat
    corecore