5,421 research outputs found

    Feel it, Don\u27t Fake it: Deep Acting and Perceptions of Feedback Utility

    Get PDF
    ...Labor has evolved from its focus on service oriented roles to academia, so we aim to add to this pool of research looking into the students\u27 perceptions of emotional labor. More specifically, we look to explore the differences in student perceptions of deep and surface acting when receiving negative feedback from a professor and how this affects students\u27 reactions to the feedback. As such, we hypothesized that participants who received negative feedback from a professor engaging in deep acting would report higher motivation to use the feedback, perceive the feedback to be more fair and useful, and have increased memory of the feedback

    Editor\u27s Note

    Get PDF

    Design Drives - materials innovation

    Get PDF
    Design Drives Materials Innovation‘ outlines the potential of a D:STEM (Design, Science, Technology, Engineering amd Mathematics) approach to combining traditionally different fields through design-led, needs driven and technology anchored future products using electro/photo/bio-active polymers in physical formats defined in ‚dots, lines, surfaces and structures‘.It also identifies Ambient Assisted Living as a key driver for future applications

    D-STEM: a Design led approach to STEM innovation

    Get PDF
    Advances in the Science, Technology, Engineering and Maths (STEM) disciplines offer opportunities for designers to propose and make products with advanced, enhanced and engineered properties and functionalities. In turn, these advanced characteristics are becoming increasingly necessary as resources become ever more strained through 21st century demands, such as ageing populations, connected communities, depleting raw materials, waste management and energy supply. We need to make things that are smarter, make our lives easier, better and simpler. The products of tomorrow need to do more with less. The issue is how to maximize the potential for exploiting opportunities offered by STEM developments and how best to enable designers to strengthen their position within the innovation ecosystem. As a society, we need designers able to navigate emerging developments from the STEM community to a level that enables understanding and knowledge of the new material properties, the skill set to facilitate absorption into the design ‘toolbox’ and the agility to identify, manage and contextualise innovation opportunities emerging from STEM developments. This paper proposes the blueprint for a new design led approach to STEM innovation that begins to redefine studio culture for the 21st Century

    Bioengineered Textiles and Nonwovens – the convergence of bio-miniaturisation and electroactive conductive polymers for assistive healthcare, portable power and design-led wearable technology

    Get PDF
    Today, there is an opportunity to bring together creative design activities to exploit the responsive and adaptive ‘smart’ materials that are a result of rapid development in electro, photo active polymers or OFEDs (organic thin film electronic devices), bio-responsive hydrogels, integrated into MEMS/NEMS devices and systems respectively. Some of these integrated systems are summarised in this paper, highlighting their use to create enhanced functionality in textiles, fabrics and non-woven large area thin films. By understanding the characteristics and properties of OFEDs and bio polymers and how they can be transformed into implementable physical forms, innovative products and services can be developed, with wide implications. The paper outlines some of these opportunities and applications, in particular, an ambient living platform, dealing with human centred needs, of people at work, people at home and people at play. The innovative design affords the accelerated development of intelligent materials (interactive, responsive and adaptive) for a new product & service design landscape, encompassing assistive healthcare (smart bandages and digital theranostics), ambient living, renewable energy (organic PV and solar textiles), interactive consumer products, interactive personal & beauty care (e-Scent) and a more intelligent built environment

    Addressing intervention fidelity within physical therapy clinical research

    Get PDF

    Representing anisotropic subduction zones with isotropic velocity models: A characterization of the problem and some steps on a possible path forward

    Get PDF
    Despite the widely known fact that mantle flow in and around subduction zones produces the development of considerable seismic anisotropy, most P-wave tomography efforts still rely on the assumption of isotropy. In this study, we explore the potential effects of erroneous assumption on tomographic images and explore an alternative approach. We conduct a series of synthetic tomography tests based on a geodynamic simulation of subduction and rollback. The simulation results provide a self-consistent distribution of isotropic (thermal) anomalies and seismic anisotropy which we use to calculate synthetic delay times for a number of realistic and hypothetical event distributions. We find that anisotropy-induced artifacts are abundant and significant for teleseismic, local and mixed event distributions. The occurrence of artifacts is not reduced, and indeed can be exacerbated, by increasing richness in ray-path azimuths and incidence angles. The artifacts that we observe are, in all cases, important enough to significantly impact the interpretation of the images. We test an approach based on prescribing the anisotropy field as an a priori constraint and find that even coarse approximations to the true anisotropy field produce useful results. Using approximate anisotropy, fields can result in reduced RMS misfit to the travel time delays and reduced abundance and severity of imaging artifacts. We propose that the use of anisotropy fields derived from geodynamic modeling and constrained by seismic observables may constitute a viable alternative to isotropic tomography that does not require the inversion for anisotropy parameters in each node of the model
    • 

    corecore