4,442 research outputs found

    Quantum gravitational contributions to quantum electrodynamics

    Full text link
    Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. But that claim has been very controversial with the situation inconclusive. Here I report an analysis (free from earlier controversies) demonstrating that that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the reduction of the electric charge at high energies, a result known as asymptotic freedom.Comment: To be published in Nature. 19 pages LaTeX, no figure

    Backgrounds for rare muonic B-meson decays in ATLAS

    Get PDF
    The work gives an overview of expected exclusive backgrounds for rare muonic B-meson decays in ATLAS. Based on theoretical calculations and a modelling in Generators, followed by phase space cuts according to fiducial detector volume and trigger acceptance, the authors classify all possible backgrounds according to their importance and select those requiring full detector simulation. The most importat background comes from Bd0→π−μ+νμB_d^0 \to \pi^- \mu^+ \nu_{\mu}, when a charged pion decays in a detector volume producing a secondary muon. Similar mechanism would lead to a background comming from B-mesons decaying to two charged hadrons. Another important background is from B+→μ+μ−l+νB^+ \to \mu^+\mu^-l^+ \nu.This note gives an overview of expected exclusive backgrounds for rare muonic B–meson decays at ATLAS from the theoretical point of view. The goal of this work is to show which of backgrounds are most important for further full detector simulation. It is shown that the most important noncombinatorial background comes from Bd0→π−μ+νμB_d^0 \to \pi^- \mu^+ \nu_{\mu} fake rate. Another important BG sources are B+→μ+μ−ℓ+νℓ,Bc+→J/ψ(μ+μ−)ℓνℓB^+ \to \mu^+\mu^-\ell^+ \nu_{\ell}, B_c^+ \to J/\psi (\mu^+ \mu^-) \ell \nu_{\ell} and two-body hadronic B–meson decays

    One-Loop Renormalization of a Self-Interacting Scalar Field in Nonsimply Connected Spacetimes

    Full text link
    Using the effective potential, we study the one-loop renormalization of a massive self-interacting scalar field at finite temperature in flat manifolds with one or more compactified spatial dimensions. We prove that, owing to the compactification and finite temperature, the renormalized physical parameters of the theory (mass and coupling constant) acquire thermal and topological contributions. In the case of one compactified spatial dimension at finite temperature, we find that the corrections to the mass are positive, but those to the coupling constant are negative. We discuss the possibility of triviality, i.e. that the renormalized coupling constant goes to zero at some temperature or at some radius of the compactified spatial dimension.Comment: 16 pages, plain LATE

    Nonlinear Diffusion Through Large Complex Networks Containing Regular Subgraphs

    Full text link
    Transport through generalized trees is considered. Trees contain the simple nodes and supernodes, either well-structured regular subgraphs or those with many triangles. We observe a superdiffusion for the highly connected nodes while it is Brownian for the rest of the nodes. Transport within a supernode is affected by the finite size effects vanishing as N→∞.N\to\infty. For the even dimensions of space, d=2,4,6,...d=2,4,6,..., the finite size effects break down the perturbation theory at small scales and can be regularized by using the heat-kernel expansion.Comment: 21 pages, 2 figures include

    Bose-Einstein condensation in arbitrarily shaped cavities

    Full text link
    We discuss the phenomenon of Bose-Einstein condensation of an ideal non-relativistic Bose gas in an arbitrarily shaped cavity. The influence of the finite extension of the cavity on all thermodynamical quantities, especially on the critical temperature of the system, is considered. We use two main methods which are shown to be equivalent. The first deals with the partition function as a sum over energy levels and uses a Mellin-Barnes integral representation to extract an asymptotic formula. The second method converts the sum over the energy levels to an integral with a suitable density of states factor obtained from spectral analysis. The application to some simple cavities is discussed.Comment: 10 pages, LaTeX, to appear in Physical Review
    • …
    corecore