822 research outputs found

    Shell Model Study of the Double Beta Decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe

    Get PDF
    The lifetimes for the double beta decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe are calculated using very large shell model spaces. The two neutrino matrix elements obtained are in good agreement with the present experimental data. For <1<1 eV we predict the following upper bounds to the half-lives for the neutrinoless mode: T1/2(0ν)(Ge)>1.851025yr.T^{(0\nu)}_{1/2}(Ge) > 1.85\,10^{25} yr., T1/2(0ν)(Se)>2.361024yr.T^{(0\nu)}_{1/2}(Se) > 2.36\,10^{24} yr. and T1/2(0ν)(Xe)>1.211025yrT^{(0\nu)}_{1/2}(Xe) > 1.21\,10^{25} yr. These results are the first from a new generation of Shell Model calculations reaching O(108^{8}) dimensions

    A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay

    Get PDF
    A large Hilbert space is used for the calculation of the nuclear matrix elements governing the light neutrino mass mediated mode of neutrinoless double beta decay of Ge76, Mo100, Cd116, Te128 and Xe136 within the proton-neutron quasiparticle random phase approximation (pn-QRPA) and the renormalized QRPA with proton-neutron pairing (full-RQRPA) methods. We have found that the nuclear matrix elements obtained with the standard pn-QRPA for several nuclear transitions are extremely sensitive to the renormalization of the particle-particle component of the residual interaction of the nuclear hamiltonian. Therefore the standard pn-QRPA does not guarantee the necessary accuracy to allow us to extract a reliable limit on the effective neutrino mass. This behaviour, already known from the calculation of the two-neutrino double beta decay matrix elements, manifests itself in the neutrinoless double-beta decay but only if a large model space is used. The full-RQRPA, which takes into account proton-neutron pairing and considers the Pauli principle in an approximate way, offers a stable solution in the physically acceptable region of the particle-particle strength. In this way more accurate values on the effective neutrino mass have been deduced from the experimental lower limits of the half-lifes of neutrinoless double beta decay.Comment: 19 pages, RevTex, 1 Postscript figur

    Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing

    Get PDF
    We have investigated the role of proton-neutron pairing in the context of the Quasiparticle Random Phase approximation formalism. This way the neutrinoless double beta decay matrix elements of the experimentally interesting A= 48, 76, 82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found that the inclusion of proton-neutron pairing influences the neutrinoless double beta decay rates significantly, in all cases allowing for larger values of the expectation value of light neutrino masses. Using the best presently available experimental limits on the half life-time of neutrinoless double beta decay we have extracted the limits on lepton number violating parameters.Comment: 16 RevTex page

    A New Class of Majoron-Emitting Double-Beta Decays

    Full text link
    Motivated by the excess events that have recently been found near the endpoints of the double beta decay spectra of several elements, we re-examine models in which double beta decay can proceed through the neutrinoless emission of massless Nambu-Goldstone bosons (majorons). Noting that models proposed to date for this process must fine-tune either a scalar mass or a VEV to be less than 10 keV, we introduce a new kind of majoron which avoids this difficulty by carrying lepton number L=2L=-2. We analyze in detail the requirements that models of both the conventional and our new type must satisfy if they are to account for the observed excess events. We find: (1) the electron sum-energy spectrum can be used to distinguish the two classes of models from one another; (2) the decay rate for the new models depends on different nuclear matrix elements than for ordinary majorons; and (3) all models require a (pseudo) Dirac neutrino, having a mass of a several hundred MeV, which mixes with νe\nu_e.Comment: 43 pages, 10 figures (included), [figure captions are now included

    New results for the two neutrino double beta decay in deformed nuclei with angular momentum projected basis

    Get PDF
    Four nuclei which are proved to be 2νββ2\nu\beta\beta emitters (76^{76}Ge, 82^{82}Se, 150^{150}Nd, 238^{238}U), and four suspected, due to the corresponding Q-values, to have this property (148^{148}Nd, 154^{154}Sm, 160^{160}Gd, 232^{232}Th), were treated within a proton-neutron quasiparticle random phase approximation (pnQRPA) with a projected spherical single particle basis. The advantage of the present procedure over the ones using a deformed Woods Saxon or Nilsson single particle basis is that the actual pnQRPA states have a definite angular momentum while all the others provide states having only K as a good quantum number. The model Hamiltonian involves a mean field term yielding the projected single particle states, a pairing interaction for alike nucleons and a dipole-dipole proton-neutron interaction in both the particle-hole (ph) and particle-particle (pp) channels. The effect of nuclear deformation on the single beta strength distribution as well as on the double beta Gamow-Teller transition amplitude (MGT_{{\rm GT}}) is analyzed. The results are compared with the existent data and with the results from a different approach, in terms of the process half life T1/2_{1/2}. The case of different deformations for mother and daughter nuclei is also presented.Comment: 45 pages, 13 figure

    Constraining Almost Degenerate Three-Flavor Neutrinos

    Full text link
    We discuss constraints on a scenario of almost degenerate three-flavor neutrinos imposed by the solar and the atmospheric neutrino anomalies, hot dark matter, and neutrinoless double β\beta decays. It is found that in the Majorana version of the model the region with relatively large θ13\theta_{13} is favored and a constraint on the CP violating phases is obtained.Comment: 19 pages (uses revtex), including 6 figures (uses epsf

    Multipolar correlations and deformation effect on nuclear transition matrix elements of double-β\beta decay

    Full text link
    The two neutrino and neutrinoless double beta decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes for the 0+0+0^{+}\to 0^{+} transition is studied within the PHFB framework along with an effective two-body interaction consisting of pairing, quadrupole-quadrupole and hexadecapole-hexadecapole correlations. It is found that the effect of hexadecapolar correlations can be assimilated substantially as a renormalization of the quadrupole-quadrupole interaction. The effect of deformation on nuclear transition matrix elements is investigated by varying the strength of quadrupolar correlations in the parent and daughter nuclei independently. The variation of the nuclear transition matrix elements as a function of the difference in deformation parameters of parent and daughter nuclei reveals that in general, the former tend to be maximum for equal deformation and they decrease as the difference in deformation parameters increases, exhibiting a very similar trend for the (ββ)2ν(\beta^{-}\beta ^{-})_{2\nu} and (ββ)0ν(\beta^{-}\beta ^{-})_{0\nu} transition matrix elements.Comment: 6 pages, 2 figure
    corecore