23 research outputs found

    A Three-Dimensional FRET Analysis to Construct an Atomic Model of the Actin–Tropomyosin–Troponin Core Domain Complex on a Muscle Thin Filament

    Get PDF
    It is essential to knowthe detailed structure of the thin filament to understand the regulation mechanism of striated muscle contraction. Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin–tropomyosin (Tm)–troponin (Tn) core domain complex. We generated single-cysteine mutants in the 167–195 region of Tm and in TnC, TnI, and the β-TnT 25-kDa fragment, and each was attached with an energy donor probe. An energy acceptor probe was located at actin Gln41, actin Cys374, or the actin nucleotide-binding site. From these donor–acceptor pairs, FRET efficiencies were determined with and without Ca2+. Using the atomic coordinates for F-actin, Tm, and the Tn core domain, we searched all possible arrangements for Tm or the Tn core domain on F-actin to calculate the FRET efficiency for each donor–acceptor pair in each arrangement. By minimizing the squared sum of deviations for the calculated FRET efficiencies from the observed FRET efficiencies, we determined the location of Tm segment 167– 195 and the Tn core domain on F-actin with andwithout Ca2+. The bulk of the Tn core domain is located near actin subdomains 3 and 4. The central helix of TnC is nearly perpendicular to the F-actin axis, directing the N-terminal domain of TnC toward the actin outer domain. The C-terminal region in the I–T arm forms a four-helix-bundle structure with the Tm 175–185 region. After Ca2+ release, the Tn core domainmoves toward the actin outer domain and closer to the center of the F-actin axis

    Synthetic retinoid Am80 ameliorates chronic graft-versus-host disease by down-regulating Th1 and Th17.

    Get PDF
    Chronic GVHD (cGVHD) is a main cause of late death and morbidity after allogeneic hematopoietic cell transplantation, but its pathogenesis remains unclear. We investigated the roles of Th subsets in cGVHD with the use of a well-defined mouse model of cGVHD. In this model, development of cGVHD was associated with up-regulated Th1, Th2, and Th17 responses. Th1 and Th2 responses were up-regulated early after BM transplantation, followed by a subsequent up-regulation of Th17 cells. Significantly greater numbers of Th17 cells were infiltrated in the lung and liver from allogeneic recipients than those from syngeneic recipients. We then evaluated the roles of Th1 and Th17 in cGVHD with the use of IFN-γ-deficient and IL-17-deficient mice as donors. Infusion of IFN-γ(-/-) or IL-17(-/-) T cells attenuated cGVHD in the skin and salivary glands. Am80, a potent synthetic retinoid, regulated both Th1 and Th17 responses as well as TGF-β expression in the skin, resulting in an attenuation of cutaneous cGVHD. These results suggest that Th1 and Th17 contribute to the development of cGVHD and that targeting Th1 and Th17 may therefore represent a promising therapeutic strategy for preventing and treating cGVHD

    Effect of Chain Transfer to Polymer in Conventional and Living Emulsion Polymerization Process

    No full text
    Emulsion polymerization process provides a unique polymerization locus that has a confined tiny space with a higher polymer concentration, compared with the corresponding bulk polymerization, especially for the ab initio emulsion polymerization. Assuming the ideal polymerization kinetics and a constant polymer/monomer ratio, the effect of such a unique reaction environment is explored for both conventional and living free-radical polymerization (FRP), which involves chain transfer to the polymer, forming polymers with long-chain branches. Monte Carlo simulation is applied to investigate detailed branched polymer architecture, including the mean-square radius of gyration of each polymer molecule, <s2>0. The conventional FRP shows a very broad molecular weight distribution (MWD), with the high molecular weight region conforming to the power law distribution. The MWD is much broader than the random branched polymers, having the same primary chain length distribution. The expected <s2>0 for a given MW is much smaller than the random branched polymers. On the other hand, the living FRP shows a much narrower MWD compared with the corresponding random branched polymers. Interestingly, the expected <s2>0 for a given MW is essentially the same as that for the random branched polymers. Emulsion polymerization process affects branched polymer architecture quite differently for the conventional and living FRP

    Universal Relationships in Hyperbranched Polymer Architecture for Batch and Continuous Step Growth Polymerization of AB2-Type Monomers

    No full text
    Design and control of hyperbranched (HB) polymer architecture by way of reactor operation is key to a successful production of higher-valued HB polymers, and it is essential in order to clarify the fundamental structural characteristics formed in representative types of reactors. In this article, the irreversible step growth polymerization of AB2 type monomer is investigated by a Monte Carlo simulation method, and the calculation was conducted for a batch and a continuous stirred-tank reactor (CSTR). In a CSTR, a highly branched core region consisting of units with large residence times is formed to give much more compact architecture, compared to batch polymerization. The universal relationships, unchanged by the conversion levels and/or the reactivity ratio, are found for the mean-square radius of gyration Rg2, and the maximum span length LMS. For batch polymerization, the g-ratio of Rg2 of the HB molecule to that for a linear molecule conforms to that for the random branched polymers represented by the Zimm-Stockmayer equation. A single linear equation represents the relationship between Rg2 and LMS, both for batch and CSTR. Appropriate process control in combination with the chemical control of the reactivity of the second B-group promises to produce tailor-made HB polymer architecture

    Model-Based Reactor Design in Free-Radical Polymerization with Simultaneous Long-Chain Branching and Scission

    No full text
    Polymers are the products of processes and their microstructure can be changed significantly by the reactor systems employed, especially for nonlinear polymers. The Monte Carlo simulation technique, based on the random sampling technique, is used to explore the effect of reactor types on the branched polymer structure, formed through free-radical polymerization with simultaneous long-chain branching and scission, as in the case of low-density polyethylene synthesis. As a simplified model for a tower-type multi-zone reactor, a series of continuous stirred-tank reactors, consisting of one big tank and the same N-1 small tanks is considered theoretically. By simply changing the tank arrangement, various types of branched polymers, from star-like globular structure to a more randomly branched structure, can be obtained, while keeping the following properties of the final products, the monomer conversion to polymer, the average branching and scission densities, and the relationship between the mean-square radius of gyration and molecular weight

    Effect of Small Reaction Locus in Free-Radical Polymerization: Conventional and Reversible-Deactivation Radical Polymerization

    No full text
    When the size of a polymerization locus is smaller than a few hundred nanometers, such as in miniemulsion polymerization, each locus may contain no more than one key-component molecule, and the concentration may become much larger than the corresponding bulk polymerization, leading to a significantly different rate of polymerization. By focusing attention on the component having the lowest concentration within the species involved in the polymerization rate expression, a simple formula can predict the particle diameter below which the polymerization rate changes significantly from the bulk polymerization. The key component in the conventional free-radical polymerization is the active radical and the polymerization rate becomes larger than the corresponding bulk polymerization when the particle size is smaller than the predicted diameter. The key component in reversible-addition-fragmentation chain-transfer (RAFT) polymerization is the intermediate species, and it can be used to predict the particle diameter below which the polymerization rate starts to increase. On the other hand, the key component is the trapping agent in stable-radical-mediated polymerization (SRMP) and atom-transfer radical polymerization (ATRP), and the polymerization rate decreases as the particle size becomes smaller than the predicted diameter

    Effect of Chain Transfer to Polymer in Conventional and Living Emulsion Polymerization Process

    No full text
    Emulsion polymerization process provides a unique polymerization locus that has a confined tiny space with a higher polymer concentration, compared with the corresponding bulk polymerization, especially for the ab initio emulsion polymerization. Assuming the ideal polymerization kinetics and a constant polymer/monomer ratio, the effect of such a unique reaction environment is explored for both conventional and living free-radical polymerization (FRP), which involves chain transfer to the polymer, forming polymers with long-chain branches. Monte Carlo simulation is applied to investigate detailed branched polymer architecture, including the mean-square radius of gyration of each polymer molecule, <s2>0. The conventional FRP shows a very broad molecular weight distribution (MWD), with the high molecular weight region conforming to the power law distribution. The MWD is much broader than the random branched polymers, having the same primary chain length distribution. The expected <s2>0 for a given MW is much smaller than the random branched polymers. On the other hand, the living FRP shows a much narrower MWD compared with the corresponding random branched polymers. Interestingly, the expected <s2>0 for a given MW is essentially the same as that for the random branched polymers. Emulsion polymerization process affects branched polymer architecture quite differently for the conventional and living FRP
    corecore