18 research outputs found

    Transcriptome-Wide Assessment of Human Brain and Lymphocyte Senescence

    Get PDF
    Identifying biological pathways that vary across the age spectrum can provide insight into fundamental mechanisms that impact disease and frailty in the elderly. Few methodological approaches offer the means to explore this question on as broad a scale as gene expression profiling. Here, we have evaluated mRNA expression profiles as a function of age in two populations; one consisting of 191 individuals with ages-at-death ranging from 65-100 years and with post-mortem brain mRNA measurements of 13,216 genes and a second with 1240 individuals ages 15-94 and lymphocyte mRNA estimates for 18,519 genes.Among negatively correlated transcripts, an enrichment of mitochondrial genes was evident in both populations, providing a replication of previous studies indicating this as a common signature of aging. Sample differences were prominent, the most significant being a decrease in expression of genes involved in translation in lymphocytes and an increase in genes involved in transcription in brain, suggesting that apart from energy metabolism other basic cell processes are affected by age but in a tissue-specific manner. In assessing genomic architecture, intron/exon sequence length ratios were larger among negatively regulated genes in both samples, suggesting that a decrease in the expression of non-compact genes may also be a general effect of aging. Variance in gene expression itself has been theorized to change with age due to accumulation of somatic mutations and/or increasingly heterogeneous environmental exposures, but we found no evidence for such a trend here.Results affirm that deteriorating mitochondrial gene expression is a common theme in senescence, but also highlight novel pathways and features of gene architecture that may be important for understanding the molecular consequences of aging

    In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases

    Get PDF
    The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position–, cell type–, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs

    Could epigenetics help explain racial disparities in chronic pain?

    No full text
    Edwin N Aroke,1 Paule V Joseph,2 Abhrarup Roy,2 Demario S Overstreet,3 Trygve O Tollefsbol,4 David E Vance,1 Burel R Goodin3 1School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA; 2Sensory Science and Metabolism Unit (SenSMet), Division of Intramural Research, National Institute of Nursing Research, National Institute of Health, DHHS, Bethesda, MD, USA; 3Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; 4Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: African Americans disproportionately suffer more severe and debilitating morbidity from chronic pain than do non-Hispanic Whites. These differences may arise from differential exposure to psychosocial and environmental factors such as adverse childhood experiences, racial discrimination, low socioeconomic status, and depression, all of which have been associated with chronic stress and chronic pain. Race, as a social construct, makes it such that African Americans are more likely to experience different early life conditions, which may induce epigenetic changes that sustain racial differences in chronic pain. Epigenetics is one mechanism by which environmental factors such as childhood stress, racial discrimination, economic hardship, and depression can affect gene expression without altering the underlying genetic sequence. This article provides a narrative review of the literature on epigenetics as a mechanism by which differential environmental exposure could explain racial differences in chronic pain. Most studies of epigenetic changes in chronic pain examine DNA methylation. DNA methylation is altered in the glucocorticoid (stress response) receptor gene, NR3C1, which has been associated with depression, childhood stress, low socioeconomic status, and chronic pain. Similarly, DNA methylation patterns of immune cytokine genes have been associated with chronic stress states. Thus, DNA methylation changes may play an essential role in the epigenetic modulation of chronic pain in different races with a higher incidence of epigenetic alterations contributing to more severe and disabling chronic pain in African Americans. Keywords: chronic pain, epigenetics, racial health disparities, epigenomics, DNA methylation, stress &nbsp
    corecore