36 research outputs found

    Quorum-quenching bacteria isolated from red sea sediments reduce biofilm formation by Pseudomonas aeruginosa

    Get PDF
    © 2018 Rehman and Leiknes. Quorum sensing (QS) is the process by which bacteria communicate with each other through small signaling molecules such as N-acylhomoserine lactones (AHLs). Certain bacteria can degrade AHL molecules by a process called quorum quenching (QQ); therefore, QQ can be used to control bacterial infections and biofilm formation. In this study, we aimed to identify new species of bacteria with QQ activity. Red Sea sediments were collected either from the close vicinity of seagrass or from areas with no vegetation. We isolated 72 bacterial strains, which were tested for their ability to degrade/inactivate AHL molecules. Chromobacterium violaceum CV026-based bioassay was used for the initial screening of isolates with QQ activity. QQ activity was further quantified using high-performance liquid chromatography-tandem mass spectrometry. We found that these isolates could degrade AHL molecules of different acyl chain lengths as well as modifications. 16S-rRNA sequencing of positive QQ isolates showed that they belonged to three different genera. Specifically, two isolates belonged to the genus Erythrobacter; four, Labrenzia; and one, Bacterioplanes. The genome of one representative isolate from each genus was sequenced, and potential QQ enzymes, namely, lactonases and acylases, were identified. The ability of these isolates to degrade the 3OXOC12-AHLs produced by Pseudomonas aeruginosa PAO1 and hence inhibit biofilm formation was investigated. Our results showed that the isolate VG12 (genus Labrenzia) is better than other isolates at controlling biofilm formation by PAO1 and degradation of different AHL molecules. Time-course experiments to study AHL degradation showed that VG1 (genus Erythrobacter) could degrade AHLs faster than other isolates. Thus, QQ bacteria or enzymes can be used in combination with an antibacterial to overcome antibiotic resistance

    Methane production in an anaerobic osmotic membrane bioreactor using forward osmosis: Effect of reverse salt flux

    Full text link
    © 2017 Elsevier Ltd This study investigated the impact of reverse salt flux (RSF) on microbe community and bio-methane production in a simulated fertilizer driven FO-AnMBR system using KCl, KNO3 and KH2PO4 as draw solutes. Results showed that KH2PO4 exhibited the lowest RSF in terms of molar concentration 19.1 mM/(m2.h), while for KCl and KNO3 it was 32.2 and 120.8 mM/(m2.h), respectively. Interestingly, bio-methane production displayed an opposite order with KH2PO4, followed by KCl and KNO3. Pyrosequencing results revealed the presence of different bacterial communities among the tested fertilizers. Bacterial community of sludge exposed to KH2PO4 was very similar to that of DI-water and KCl. However, results with KNO3 were different since the denitrifying bacteria were found to have a higher percentage than the sludge with other fertilizers. This study demonstrated that RSF has a negative effect on bio-methane production, probably by influencing the sludge bacterial community via environment modification

    Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system

    Full text link
    © 2017 Environmental and economic impacts of the fertilizer drawn forward osmosis (FDFO) and nanofiltration (NF) hybrid system were conducted and compared with conventional reverse osmosis (RO) hybrid scenarios using microfiltration (MF) or ultrafiltration (UF) as a pre-treatment process. The results showed that the FDFO-NF hybrid system using thin film composite forward osmosis (TFC) FO membrane has less environmental impact than conventional RO hybrid systems due to lower consumption of energy and cleaning chemicals. The energy requirement for the treatment of mine impaired water by the FDFO-NF hybrid system was 1.08 kWh/m3, which is 13.6% less energy than an MF-RO and 21% less than UF-RO under similar initial feed solution. In a closed-loop system, the FDFO-NF hybrid system using a TFC FO membrane with an optimum NF recovery rate of 84% had the lowest unit operating expenditure of AUD $0.41/m3. Besides, given the current relatively high price and low flux performance of the cellulose triacetate and TFC FO membranes, the FDFO-NF hybrid system still holds opportunities to reduce operating expenditure further. Optimizing NF recovery rates and improving the water flux of the membrane would decrease the unit OPEX costs, although the TFC FO membrane would be less sensitive to this effect

    Evaluating the effect of different draw solutes in a baffled osmotic membrane bioreactor-microfiltration using optical coherence tomography with real wastewater

    Full text link
    © 2018 Elsevier Ltd This study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor for real sewage employing baffles in the reactor. To study the biofouling development on forward osmosis membranes optical coherence tomography (OCT) technique was employed. On-line monitoring of biofilm growth on a flat sheet cellulose triacetate forward osmosis (CTA-FO) membrane was conducted for 21 days. Further, the process performance was evaluated in terms of water flux, organic and nutrient removal, microbial activity in terms of soluble microbial products (SMP) and extracellular polymeric substance (EPS), and floc size. The measured biofouling layer thickness was in the order sodium chloride (NaCl) > ammonium sulfate (SOA) > potassium dihydrogen phosphate (KH2PO4). Very high organic removal (96.9 ± 0.8%) and reasonably good nutrient removal efficiency (85.2 ± 1.6% TN) was achieved. The sludge characteristics and biofouling layer thickness suggest that less EPS and higher floc size were the governing factors for less fouling

    Assessing the removal of organic micro-pollutants from anaerobic membrane bioreactor effluent by fertilizer-drawn forward osmosis

    Full text link
    © 2017 Elsevier B.V. In this study, the behavior of organic micro-pollutants (OMPs) transport including membrane fouling was assessed in fertilizer-drawn forward osmosis (FDFO) during treatment of the anaerobic membrane bioreactor (AnMBR) effluent. The flux decline was negligible when the FO membrane was oriented with active layer facing feed solution (AL-FS) while severe flux decline was observed with active layer facing draw solution (AL-DS) with di-ammonium phosphate (DAP) fertilizer as DS due to struvite scaling inside the membrane support layer. DAP DS however exhibited the lowest OMPs forward flux or higher OMPs rejection rate compared to other two fertilizers (i.e., mono-ammonium phosphate (MAP) and KCl). MAP and KCl fertilizer DS had higher water fluxes that induced higher external concentration polarization (ECP) and enhanced OMPs flux through the FO membrane. Under the AL-DS mode of membrane orientation, OMPs transport was further increased with MAP and KCl as DS due to enhanced concentrative internal concentration polarization while with DAP the internal scaling enhanced mass transfer resistance thereby lowering OMPs flux. Physical or hydraulic cleaning could successfully recover water flux for FO membranes operated under the AL-FS mode but only partial flux recovery was observed for membranes operated under AL-DS mode because of internal scaling and fouling in the support layer. Osmotic backwashing could however significantly improve the cleaning efficiency

    Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge

    Full text link
    © 2017 Elsevier Ltd The present study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor system for wastewater treatment employing baffles in the reactor. Thus, this reactor design enables both aerobic and anoxic processes in an attempt to reduce the process footprint and energy costs associated with continuous aeration. The process performance was evaluated in terms of water flux, salinity build up in the bioreactor, organic and nutrient removal and microbial activity using synthetic reverse osmosis (RO) brine as draw solution (DS). The incorporation of MF membrane was effective in maintaining a reasonable salinity level (612–1434 mg/L) in the reactor which resulted in a much lower flux decline (i.e. 11.48–6.98 LMH) as compared to previous studies. The stable operation of the osmotic membrane bioreactor–forward osmosis (OMBR-FO) process resulted in an effective removal of both organic matter (97.84%) and nutrient (phosphate 87.36% and total nitrogen 94.28%), respectively

    Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    Full text link
    © 2017 Elsevier B.V. This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil. Results from the bench-scale experiments showed that the commercial hydroponic nutrient solution (i.e. solution containing water and essential nutrients) exhibited similar performance (i.e., water flux and reverse salt flux) to other inorganic draw solutions when treating synthetic wastewater. The use of hydroponic solution is highly advantageous since it provides all the required macro- (i.e., N, P and K) and micronutrients (i.e., Ca, Mg, S, Mn, B, Zn and Mo) in a single balanced solution and can therefore be used directly after dilution without the need to add any elements. After long-term operation (i.e. up to 75% water recovery), different physical cleaning methods were tested and results showed that hydraulic flushing can effectively restore up to 75% of the initial water flux while osmotic backwashing was able to restore the initial water flux by more than 95%; illustrating the low-fouling potential of the FDFO process. Pilot-scale studies demonstrated that the FDFO process is able to produce the required nutrient concentration and final water quality (i.e., pH and conductivity) suitable for hydroponic applications. Coupling FDFO with pressure assisted osmosis (PAO) in the later stages could help in saving operational costs (i.e., energy and membrane replacement costs). Finally, the test application of nutrient solution produced by the pilot FDFO process to hydroponic lettuce showed similar growth pattern as the control without any signs of nutrient deficiency

    Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions

    Full text link
    © 2016 Elsevier Ltd The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH2PO4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased

    Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation

    Full text link
    © 2016 Elsevier B.V. The pilot-scale fertiliser driven forward osmosis (FDFO) and nanofiltration (NF) system was operated in the field for about six months for the desalination of saline groundwater from the coal mining activities. Long-term operation of the FDFO-NF system indicates that simple hydraulic cleaning could effectively restore the water flux with minimal chemical cleaning frequency. No fouling/scaling issues were encountered with the NF post-treatment process. The study indicates that, FDFO-NF desalination system can produce water quality that meets fertigation standard. This study also however shows that, the diffusion of solutes (both feed and draw) through the cellulose triacetate (CTA) FO membrane could be one of the major issues. The FO feed brine failed to meet the effluent discharge standard for NH4+ and SO42+ (reverse diffusion) and their concentrations are expected to further increase at higher feed recovery rates. Low rejection of feed salts (Na+, Cl-) by FO membrane may result in their gradual build-up in the fertiliser draw solution (DS) in a closed FDFO-NF system eventually affecting the final water quality unless it is balanced by adequate bleeding from the system through NF and re-reverse diffusion towards the FO feed brine. Therefore, FO membrane with higher reverse flux selectivity than the CTA-FO membrane used in this study is necessary for the application of the FDFO desalination process

    Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity

    Full text link
    © 2017 Elsevier Ltd To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14 μmol/m2/s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10–50 mg/L, initial phosphate phosphorus 2–10 mg/L and microalgal seed 40 mg/L. Maximum microalgal biomass and minimum generation time were 370.9 mg/L and 2.5 d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2 mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5 mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6–39.5 L/m2/h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent
    corecore