8 research outputs found

    The pro-migratory and pro-invasive role of the procoagulant tissue factor in malignant gliomas

    No full text
    During the infiltration process, glioma cells are known to migrate along preexisting anatomical structures such as blood vessels, axonal fiber tracts and the subependymal space, thereby widely invading surrounding CNS tissue. This phenomenon represents a major obstacle for the clinical treatment of these tumors. Several extracellular key factors and intracellular signaling pathways have been previously linked to the highly aggressive, invasive phenotype observed in malignant gliomas. The glioblastoma (GBM), which is the most malignant form of these tumors, is histologically characterized by areas of tumor necroses and pseudopalisading cells, the latter likely representing tumor cells actively migrating away from the hypoxic- ischemic core of the tumor. It is believed that intravascular thromboses play a major role in the emergence of hypoxia and intratumoral necroses in GBMs. One of the most highly upregulated prothrombotic factor in malignant gliomas is tissue factor (TF), a 47 kDa type I transmembrane protein belonging to the cytokine receptor superfamily. In a recent study, we provided evidence that TF/FVIIa signaling via the protease-activated receptor 2 (PAR-2) promotes cell growth, migration and invasion of glioma cells. In this Commentary & View, we outline the key molecular players involved in migration and invasion of gliomas, highlight the potential role of TF for the pro-migratory and pro-invasive phenotype of these tumors and discuss the underlying mechanisms on the cellular level and in the tumor microenvironment

    Physiology and Pathophysiology of Wound Healing in Diabetes

    No full text
    Wound healing is a dynamic process comprising of overlapping phases of hemostasis, inflammation, proliferation, and remodeling that involve multiple cell types. This highly organized and coordinated series of processes result in the restoration of tissue integrity. Deregulation in any of these processes leads to a delayed or nonhealing phenotype as seen in diabetic foot ulcers (DFUs). The functions and cell-to-cell communication between different cell types contributing to wound healing (keratinocytes, fibroblasts, endothelial cells, neutrophils, and macrophages) and their deregulation in chronic nonhealing ulcers are discussed in detail. The balance of signaling factors, including growth factors and gene expression regulators such as microRNA, and their spatiotemporal control is indispensable for successful wound healing, while their dysregulation contributes to pathophysiology of DFUs. Additional factors that contribute to the delayed healing seen in diabetes include macro- and microvascular, neuropathic, immune functions, and microbiome abnormalities. Novel therapeutic approaches including cell therapy, stem cells, and micrografting that provide perspective on how to efficiently treat patients with DFUs are also discussed
    corecore