58 research outputs found

    Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas

    Get PDF
    The MTA1 gene is a recently identified novel candidate breast cancer metastasis-associated gene which has been implicated in the signal transduction or regulation of gene expression. We examined the mRNA expression levels of the MTA1, the human homologue of the rat mta1 gene in 47 surgically resected oesophageal squamous cell carcinomas by quantitative reverse transcription polymerase chain reaction. The relative overexpression of MTA1 mRNA (tumour/normal ratio ≥ 2) was observed in 16 out of 47 (34.0%) oesophageal carcinomas. Oesophageal tumours overexpressing MTA1 mRNA (T/N ratio ≥ 2) showed significantly higher frequencies of adventitial invasion (P < 0.05) and lymph node metastasis (P < 0.05), and tended to have a higher rate of lymphatic involvement than the remaining tumours. Thus, the data suggest that the MTA1 gene might play an important role in invasion and metastasis of oesophageal carcinomas. © 1999 Cancer Research Campaig

    Resistance of Dynamin-related Protein 1 Oligomers to Disassembly Impairs Mitophagy, Resulting in Myocardial Inflammation and Heart Failure

    Get PDF
    We have reported previously that a missense mutation in the mitochondrial fission gene Dynamin-related protein 1 (Drp1) underlies the Python mouse model of monogenic dilated cardiomyopathy. The aim of this study was to investigate the consequences of the C452F mutation on Drp1 protein function and to define the cellular sequelae leading to heart failure in the Python monogenic dilated cardiomyopathy model. We found that the C452F mutation increased Drp1 GTPase activity. The mutation also conferred resistance to oligomer disassembly by guanine nucleotides and high ionic strength solutions. In a mouse embryonic fibroblast model, Drp1 C452F cells exhibited abnormal mitochondrial morphology and defective mitophagy. Mitochondria in C452F mouse embryonic fibroblasts were depolarized and had reduced calcium uptake with impaired ATP production by oxidative phosphorylation. In the Python heart, we found a corresponding progressive decline in oxidative phosphorylation with age and activation of sterile inflammation. As a corollary, enhancing autophagy by exposure to a prolonged low-protein diet improved cardiac function in Python mice. In conclusion, failure of Drp1 disassembly impairs mitophagy, leading to a downstream cascade of mitochondrial depolarization, aberrant calcium handling, impaired ATP synthesis, and activation of sterile myocardial inflammation, resulting in heart failure

    The cytokine-driven regulation of secretoglobins in normal human upper airway and their expression, particularly that of uteroglobin-related protein 1, in chronic rhinosinusitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The involvement of secretoglobins (SCGBs) other than SCGB1A1 (Clara cell 10-kDa protein, CC10) in human airway diseases remains unexplored. Among those SCGBs, SCGB3A2 (uteroglobin-related protein 1, UGRP1) is particularly interesting, given its structure and function similarities with SCGB1A1 (CC10). The aim of this study was to investigate the expression regulation of SCGBs other than SCGB1A1 (CC10) in human upper airway, and their potential involvement, particularly that of SCGB3A2 (UGRP1), in chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) and without nasal polyps (CRSsNP).</p> <p>Methods</p> <p>Eight SCGB family members including SCGB3A2 (UGRP1), SCGB1C1 (ligand binding protein RYD5), SCGB1D1 (lipophilin A), SCGB1D2 (lipophilin B), SCGB1D4 (interferon-γ inducible SCGB), SCGB2A1 (mammaglobin 2), SCGB2A2 (mammaglobin 1), and SCGB3A1 (uteroglobin-related protein 2) were studied. The regulation of SCGBs mRNA expression in normal nasal mucosa by proinflammatory, Th1, and Th2 cytokines was studied through nasal explant culture. SCGBs mRNA expression levels in CRSsNP and CRSwNP patients and controls were compared. The mRNA levels were detected by means of quantitative reverse transcriptase-polymerase chain reaction. The protein expression of SCGB3A2 (UGRP1) was analyzed using immunohistochemistry.</p> <p>Results</p> <p>The expression of SCGBs except SCGB1D2 (lipophilin B) could be found in upper airway and be differentially regulated by different cytokines. SCGB3A2 (UGRP1) mRNA expression was induced by Th1 cytokine, but suppressed by proinflammatory and Th2 cytokines. SCGBs mRNA expression was altered in CRS; particularly, SCGB3A2 (UGRP1) protein and mRNA expression was markedly decreased in both CRSsNP and CRSwNP and its protein levels inversely correlated with the number of total infiltrating cells, preoperative sinonasal CT scores, and postoperative endoscopy and symptom scores.</p> <p>Conclusion</p> <p>SCGBs except SCGB1D2 (lipophilin B) are expressed in human upper airway and their expression can be differentially regulated by inflammatory cytokines. SCGBs mRNA expression is altered in CRS. Reduced production of UGRP1, which is likely due, at least in part, to a local cytokine environment, may contribute to the hyper-inflammation in CRS and correlates with response to surgery.</p

    Refined physical map of the human PAX2/HOX11/NFKB2 cancer gene region at 10q24 and relocalization of the HPV6AI1 viral integration site to 14q13.3-q21.1

    Get PDF
    BACKGROUND: Chromosome band 10q24 is a gene-rich domain and host to a number of cancer, developmental, and neurological genes. Recurring translocations, deletions and mutations involving this chromosome band have been observed in different human cancers and other disease conditions, but the precise identification of breakpoint sites, and detailed characterization of the genetic basis and mechanisms which underlie many of these rearrangements has yet to be resolved. Towards this end it is vital to establish a definitive genetic map of this region, which to date has shown considerable volatility through time in published works of scientific journals, within different builds of the same international genomic database, and across the differently constructed databases. RESULTS: Using a combination of chromosome and interphase fluorescent in situ hybridization (FISH), BAC end-sequencing and genomic database analysis we present a physical map showing that the order and chromosomal orientation of selected genes within 10q24 is CEN-CYP2C9-PAX2-HOX11-NFKB2-TEL. Our analysis has resolved the orientation of an otherwise dynamically evolving assembly of larger contigs upstream of this region, and in so doing verifies the order and orientation of a further 9 cancer-related genes and GOT1. This study further shows that the previously reported human papillomavirus type 6a DNA integration site HPV6AI1 does not map to 10q24, but that it maps at the interface of chromosome bands 14q13.3-q21.1. CONCLUSIONS: This revised map will allow more precise localization of chromosome rearrangements involving chromosome band 10q24, and will serve as a useful baseline to better understand the molecular aetiology of chromosomal instability in this region. In particular, the relocation of HPV6AI1 is important to report because this HPV6a integration site, originally isolated from a tonsillar carcinoma, was shown to be rearranged in other HPV6a-related malignancies, including 2 of 25 genital condylomas, and 2 of 7 head and neck tumors tested. Our finding shifts the focus of this genomic interest from 10q24 to the chromosome 14 site

    Impaired Spleen Formation Perturbs Morphogenesis of the Gastric Lobe of the Pancreas

    Get PDF
    Despite the extensive use of the mouse as a model for studies of pancreas development and disease, the development of the gastric pancreatic lobe has been largely overlooked. In this study we use optical projection tomography to provide a detailed three-dimensional and quantitative description of pancreatic growth dynamics in the mouse. Hereby, we describe the epithelial and mesenchymal events leading to the formation of the gastric lobe of the pancreas. We show that this structure forms by perpendicular growth from the dorsal pancreatic epithelium into a distinct lateral domain of the dorsal pancreatic mesenchyme. Our data support a role for spleen organogenesis in the establishment of this mesenchymal domain and in mice displaying perturbed spleen development, including Dh +/−, Bapx1−/− and Sox11−/−, gastric lobe development is disturbed. We further show that the expression profile of markers for multipotent progenitors is delayed in the gastric lobe as compared to the splenic and duodenal pancreatic lobes. Altogether, this study provides new information regarding the developmental dynamics underlying the formation of the gastric lobe of the pancreas and recognizes lobular heterogeneities regarding the time course of pancreatic cellular differentiation. Collectively, these data are likely to constitute important elements in future interpretations of the developing and/or diseased pancreas

    Transient Responses to NOTCH and TLX1/HOX11 Inhibition in T-Cell Acute Lymphoblastic Leukemia/Lymphoma

    Get PDF
    To improve the treatment strategies of T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), further efforts are needed to identify therapeutic targets. Dysregulated expression of HOX-type transcription factors occurs in 30–40% of cases of T-ALL. TLX1/HOX11 is the prototypical HOX-type transcription factor. TLX1 may be an attractive therapeutic target because mice that are deficient in TLX1 are healthy. To test this possibility, we developed a conditional doxycycline-regulated mouse model of TLX1-initiated T-ALL. TLX1 induced T-ALL after ∼5–7 months with penetrance of 15–60%. Similar to human TLX1-type T-ALLs, the TLX1-induced tumors were arrested at the cortical stage of T-cell development and acquired activating NOTCH1 mutations. Inhibition of NOTCH signaling abrogated growth of cell lines derived from the TLX1-induced tumors. NOTCH inhibition also transiently delayed leukemia progression in vivo. Suppression of TLX1 expression slowed the growth of TLX1 tumor cell lines. Suppression of TLX1 in vivo also transiently delayed leukemia progression. We have shown that TLX1 functions as a T-cell oncogene that is active during both the induction and the maintenance phases of leukemia. However, the effect of suppressing NOTCH or TLX1 was transient. The tumors eventually “escaped” from inhibition. These data imply that the biological pathways and gene sets impacted by TLX1 and NOTCH have largely lost their importance in the fully established tumor. They have been supplanted by stronger oncogenic pathways. Although TLX1 or NOTCH inhibitors may not be effective as single agents, they may still contribute to combination therapy for TLX1-driven acute leukemia

    Happiness and health behaviours in Chilean college students: A cross-sectional survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Happiness has been associated with a range of favourable health outcomes through two pathways: its relationship with favourable biological responses to stress and with healthy lifestyles and prudent health behaviours. There are a substantial number of cross-cultural studies about happiness, but none of them has studied the association of happiness with perceived stress and health behaviours in Latin American samples. Therefore, the aim of this study was to examine the association between general happiness and these variables in a Latin American sample.</p> <p>Methods</p> <p>We conducted a survey to examine the status of 3461 students aged between 17 and 24 years old (mean age = 19.89; SD = 1.73) who attended University of Santiago de Chile during 2009. The healthy behaviours indexes assessed were the frequency of daily physical exercise, fruits/vegetables intake, breakfast and lunch intake, smoking, alcohol and other drugs consumption. We also included the assessment of perceived stress and Body Mass Index. All of them were evaluated using a self-report questionnaire.</p> <p>Results</p> <p>The univariate and multivariate binary logistic regression analyses showed that being female and younger was related to a higher happiness, as well as that people self-reporting daily physical activity, having lunch and fruits and vegetables each day had a higher likelihood (OR between 1.33 and 1.40) of being classified as "very happy". Those who informed felt stressed in normal circumstances and during tests situations showed a lower likelihood (0.73 and 0.82, respectively) of being considered "very happy". Regarding drug consumption, taking tranquilizers under prescription was negative related to "subjective happiness" (OR = 0.62), whereas smoking was positive associated (OR = 1.20).</p> <p>Conclusions</p> <p>The findings of this study mainly support the relationship between happiness and health outcomes through the two pathways previously mentioned. They also underscore the importance of that some healthy behaviours and person's cognitive appraisal of stress are integrated into their lifestyle for college students. Additionally, highlight the importance of taking into account these variables in the design of strategies to promote health education in university setting.</p

    Sequential gene targeting to make chimeric tumor models with de novo chromosomal abnormalities.

    No full text
    The discovery of chromosomal translocations in leukemia/lymphoma and sarcomas presaged a widespread discovery in epithelial tumors. With the advent of new-generation whole-genome sequencing, many consistent chromosomal abnormalities have been described together with putative driver and passenger mutations. The multiple genetic changes required in mouse models to assess the interrelationship of abnormalities and other mutations are severe limitations. Here, we show that sequential gene targeting of embryonic stem cells can be used to yield progenitor cells to generate chimeric offspring carrying all the genetic changes needed for cell-specific cancer. Illustrating the technology, we show that MLL-ENL fusion is sufficient for lethal leukocytosis and proof of genome integrity comes from germline transmission of the sequentially targeted alleles. This accelerated technology leads to a reduction in mouse numbers (contributing significantly to the 3Rs), allows fluorescence tagging of cancer-initiating cells, and provides a flexible platform for interrogating the interaction of chromosomal abnormalities with mutations
    corecore