30 research outputs found

    Minimally invasive surgery and cancer: controversies part 1

    Get PDF
    Perhaps there is no more important issue in the care of surgical patients than the appropriate use of minimally invasive surgery (MIS) for patients with cancer. Important advances in surgical technique have an impact on early perioperative morbidity, length of hospital stay, pain management, and quality of life issues, as clearly proved with MIS. However, for oncology patients, historically, the most important clinical questions have been answered in the context of prospective randomized trials. Important considerations for MIS and cancer have been addressed, such as what are the important immunologic consequences of MIS versus open surgery and what is the role of laparoscopy in the staging of gastrointestinal cancers? This review article discusses many of the key controversies in the minimally invasive treatment of cancer using the pro–con debate format

    ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation

    Get PDF
    The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-κB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs

    A Novel Acquisition Technique to Utilize Swan-Ganz Catheter data as a Surrogate for High-fidelity Micromanometry within the Right Ventricle and Pulmonary Circuit

    No full text
    We explored the possibility of using conventional right-heart catheterization data, gathered both prospectively and retrospectively, as a surrogate for high-fidelity micro-manometery when analyzing systolic and diastolic RV function and calculating various ventricular and pulmonary hemodynamic parameters in the time domain. Right heart catheterizations were performed on 13 patients (7 female), who were suspected of having pulmonary hypertension. The procedure included use of both fluid-filled catheter and high-fidelity micromanometry to measure right ventricular and pulmonary arterial pressures. A digital data acquisition system was used to record micromanometer readings and data from the fluid-filled catheter system during prospective portion of the study. Retrospective data was obtained by direct digitization of screen captures taken by the conventional clinical system (fluid-filled catheter). From the 13 patients, 12-13 RV waveforms and 12 PA waveforms were acquired from each method. Basic measurements of heart rate, systolic pressure, diastolic pressure, dP/dtmax, and dP/dtmin were compared between micromanometry, direct acquisition from the PA catheter (voltage acquisition), and re-digitization of the hemodynamic waveforms (tracing). Correlation between Swan and tracing was stronger than that of Millar and Swan. SBP, followed by HR, has the strongest correlation of any parameter for all three methods, while DBP appears to be the weakest. Bland-Altman analysis shows all parameters to have minimal biases that are within clinical limits. Interoperator and intraoperator variability was minimal. Digital right-heart catheterization (RHC) data can be used as a surrogate for micromanometric data under ideal conditions for hemodynamic measures in the time domain. Pre-existing RHC data can be re-digitized for more rigorous hemodynamic analysis
    corecore