42 research outputs found

    A test of financial incentives to improve warfarin adherence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sub-optimal adherence to warfarin places millions of patients at risk for stroke and bleeding complications each year. Novel methods are needed to improve adherence for warfarin. We conducted two pilot studies to determine whether a lottery-based daily financial incentive is feasible and improves warfarin adherence and anticoagulation control.</p> <p>Methods</p> <p>Volunteers from the University of Pennsylvania Anticoagulation Management Center who had taken warfarin for at least 3 months participated in either a pilot study with a lottery with a daily expected value of 5(N=10)oradailyexpectedvalueof5 (N = 10) or a daily expected value of 3 (N = 10). All subjects received use of an Informedix Med-eMonitor™ System with a daily reminder feature. If subjects opened up their pill compartments appropriately, they were entered into a daily lottery with a 1 in 5 chance of winning 10anda1in100chanceofwinning10 and a 1 in 100 chance of winning 100 (pilot 1) or a 1 in 10 chance of winning 10anda1in100chanceofwinning10 and a 1 in 100 chance of winning 100 (pilot 2). The primary study outcome was proportion of incorrect warfarin doses. The secondary outcome was proportion of INR measurements not within therapeutic range. Within-subject pre-post comparisons were done of INR measurements with comparisons with either historic means or within-subject comparisons of incorrect warfarin doses.</p> <p>Results</p> <p>In the first pilot, the percent of out-of-range INRs decreased from 35.0% to 12.2% during the intervention, before increasing to 42% post-intervention. The mean proportion of incorrect pills taken during the intervention was 2.3% incorrect pills, compared with a historic mean of 22% incorrect pill taking in this clinic population. Among the five subjects who also had MEMS cap adherence data from warfarin use in our prior study, mean incorrect pill taking decreased from 26% pre-pilot to 2.8% in the pilot. In the second pilot, the time out of INR range decreased from 65.0% to 40.4%, with the proportion of mean incorrect pill taking dropping to 1.6%.</p> <p>Conclusion</p> <p>A daily lottery-based financial incentive demonstrated the potential for significant improvements in missed doses of warfarin and time out of INR range. Further testing should be done of this approach to determine its effectiveness and potential application to both warfarin and other chronic medications.</p

    Consistency of cosmic shear analyses in harmonic and real space

    Get PDF
    Recent cosmic shear studies have reported discrepancies of up to 1σ on the parameter S8=σ8Ωm/0.3‾‾‾‾‾‾‾√S8=σ8Ωm/0.3 between the analysis of shear power spectra and two-point correlation functions, derived from the same shear catalogues. It is not a priori clear whether the measured discrepancies are consistent with statistical fluctuations. In this paper, we investigate this issue in the context of the forthcoming analyses from the third year data of the Dark Energy Survey (DES Y3). We analyse DES Y3 mock catalogues from Gaussian simulations with a fast and accurate importance sampling pipeline. We show that the methodology for determining matching scale cuts in harmonic and real space is the key factor that contributes to the scatter between constraints derived from the two statistics. We compare the published scales cuts of the KiDS, Subaru-HSC, and DES surveys, and find that the correlation coefficients of posterior means range from over 80 per cent for our proposed cuts, down to 10 per cent for cuts used in the literature. We then study the interaction between scale cuts and systematic uncertainties arising from multiple sources: non-linear power spectrum, baryonic feedback, intrinsic alignments, uncertainties in the point spread function, and redshift distributions. We find that, given DES Y3 characteristics and proposed cuts, these uncertainties affect the two statistics similarly; the differential biases are below a third of the statistical uncertainty, with the largest biases arising from intrinsic alignment and baryonic feedback. While this work is aimed at DES Y3, the tools developed can be applied to Stage-IV surveys where statistical errors will be much smaller

    The intrinsic alignment of red galaxies in DES Y1 redMaPPer galaxy clusters

    Get PDF
    Clusters of galaxies trace the most non-linear peaks in the cosmic density field. The weak gravitational lensing of background galaxies by clusters can allow us to infer their masses. However, galaxies associated with the local environment of the cluster can also be intrinsically aligned due to the local tidal gradient, contaminating any cosmology derived from the lensing signal. We measure this intrinsic alignment in Dark Energy Survey (DES) Year 1 REDMAPPER clusters. We find evidence of a non-zero mean radial alignment of galaxies within clusters between redshifts 0.1–0.7. We find a significant systematic in the measured ellipticities of cluster satellite galaxies that we attribute to the central galaxy flux and other intracluster light. We attempt to correct this signal, and fit a simple model for intrinsic alignment amplitude (AIA) to the measurement, finding AIA = 0.15 ± 0.04, when excluding data near the edge of the cluster. We find a significantly stronger alignment of the central galaxy with the cluster dark matter halo at low redshift and with higher richness and central galaxy absolute magnitude (proxies for cluster mass). This is an important demonstration of the ability of large photometric data sets like DES to provide direct constraints on the intrinsic alignment of galaxies within clusters. These measurements can inform improvements to small-scale modelling and simulation of the intrinsic alignment of galaxies to help improve the separation of the intrinsic alignment signal in weak lensing studies

    Detection of the significant impact of source clustering on higher-order statistics with DES Year 3 weak gravitational lensing data

    Get PDF
    We measure the impact of source galaxy clustering on higher-order summary statistics of weak gravitational lensing data. By comparing simulated data with galaxies that either trace or do not trace the underlying density field, we show this effect can exceed measurement uncertainties for common higher-order statistics for certain analysis choices. We evaluate the impact on different weak lensing observables, finding that third moments and wavelet phase harmonics are more affected than peak count statistics. Using Dark Energy Survey Year 3 data we construct null tests for the source-clustering-free case, finding a p-value of p = 4 × 10−3 (2.6σ) using third-order map moments and p = 3 × 10−11 (6.5σ) using wavelet phase harmonics. The impact of source clustering on cosmological inference can be either be included in the model or minimized through ad-hoc procedures (e.g. scale cuts). We verify that the procedures adopted in existing DES Y3 cosmological analyses were sufficient to render this effect negligible. Failing to account for source clustering can significantly impact cosmological inference from higher-order gravitational lensing statistics, e.g. higher-order N-point functions, wavelet-moment observables, and deep learning or field level summary statistics of weak lensing maps

    Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices

    Get PDF
    Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel'dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on S8=σ8ωm/0.3 at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level

    Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. II. Cross-correlation measurements and cosmological constraints

    Get PDF
    Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500 deg2 SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel'dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of ωm=0.272-0.052+0.032 and S8σ8ωm/0.3=0.736-0.028+0.032 (ωm=0.245-0.044+0.026 and S8=0.734-0.028+0.035) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find ωm=0.270-0.061+0.043 and S8=0.740-0.029+0.034. Our constraints on S8 are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck

    Dark energy survey year 3 results: Photometric data set for cosmology

    Get PDF
    We describe the Dark Energy Survey (DES) photometric data set assembled from the first three years of science operations to support DES Year 3 cosmologic analyses, and provide usage notes aimed at the broad astrophysics community. Y3 GOLD improves on previous releases from DES, Y1 GOLD, and Data Release 1 (DES DR1), presenting an expanded and curated data set that incorporates algorithmic developments in image detrending and processing, photometric calibration, and object classification. Y3 GOLD comprises nearly 5000 deg of grizY imaging in the south Galactic cap, including nearly 390 million objects, with depth reaching a signal-to-noise ratio ∼10 for extended objects up to i ∼ 23.0, and top-of-the-atmosphere photometric uniformity 98% and purity >99% for galaxies with 19 < i < 22.5. Additionally, it includes per-object quality information, and accompanying maps of the footprint coverage, masked regions, imaging depth, survey conditions, and astrophysical foregrounds that are used to select the cosmologic analysis samples. 2 AB A
    corecore