6 research outputs found

    Effects of second-generation and indoor sports surfaces on knee joint kinetics and kinematics during 45° and 180° cutting manoeuvres, and exploration using statistical parametric mapping and Bayesian analyses

    Get PDF
    Purpose: The aim of the current investigation was to examine the influence of second generation (2G) and indoor surfaces on knee joint kinetics, kinematics, frictional and muscle force parameters during 45° and 180° change of direction movements using statistical parametric mapping (SPM) and Bayesian analyses. Methods: Twenty male participants performed 45° and 180° change of direction movements on 2G and indoor surfaces. Lower limb kinematics were collected using an eight-camera motion capture system and ground reaction forces were quantified using an embedded force platform. ACL, patellar tendon and patellofemoral loading was examined via a musculoskeletal modelling approaches and the frictional properties of the surfaces were examined using ground reaction force information. Differences between surfaces were examined using SPM and Bayesian analyses. Results: Both SPM and Bayesian analyses showed that ACL loading parameters were greater in the 2G condition in relation to the indoor surface. Conversely, SPM and Bayesian analyses confirmed that patellofemoral/ patellar tendon loading alongside the coefficient of friction and peak rotational moment were larger in the indoor condition compared to the 2G surface. Conclusions: This study indicates that the indoor surface may improve change of direction performance owing to enhanced friction at the shoe-surface interface but augment the risk from patellar tendon/ patellofemoral injuries; whereas the 2G condition may enhance the risk from ACL pathologies

    Maimonides Spirituality: Intellectual Mysticism and the Love of God

    No full text

    Gersonides: Levi ben Gerson

    No full text

    Implementing Ultrasound Imaging for the Assessment of Muscle and Tendon Properties in Elite Sports: Practical Aspects, Methodological Considerations and Future Directions.

    No full text
    Ultrasound (US) imaging has been widely used in both research and clinical settings to evaluate the morphological and mechanical properties of muscle and tendon. In elite sports scenarios, a regular assessment of such properties has great potential, namely for testing the response to training, detecting athletes at higher risks of injury, screening athletes for structural abnormalities related to current or future musculoskeletal complaints, and monitoring their return to sport after a musculoskeletal injury. However, several practical and methodological aspects of US techniques should be considered when applying this technology in the elite sports context. Therefore, this narrative review aims to (1) present the principal US measures and field of applications in the context of elite sports; (2) to discuss, from a methodological perspective, the strengths and shortcomings of US imaging for the assessment of muscle and tendon properties; and (3) to provide future directions for research and application
    corecore