13 research outputs found

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Hurdle factors minimizing growth of <em>Listeria monocytogenes</em> while counteracting <em>in situ</em> antilisterial effects of a novel nisin A-producing <em>Lactococcus lactis</em> subsp. <em>cremoris</em> costarter in thermized cheese milks

    No full text

    AMP-Activated Protein Kinase: A Metabolic Stress Sensor in the Heart

    No full text
    International audienceAMP-activated protein kinase (AMPK) is a central cellular signaling hub that senses and responds to different kinds of stress, mainly those triggered by impaired cellular energy homeostasis. Since this is of major importance for the heart, the kinase plays important roles for cardiovascular function in human health and disease. Here, we review recent progress on the molecular structure and role of AMPK and summarize regulation and biological actions of the AMPK pathway, in particular those relevant for the heart. Activation of the kinase is involved in the myocardial response to ischemia, pressure overload, and heart failure. Pharmacological activation of AMPK may prove to be a useful therapeutic strategy in the treatment of these pathologies. (PDF) AMP-Activated Protein Kinase: A Metabolic Stress Sensor in the Heart. Available from: https://www.researchgate.net/publication/283756966_AMP-Activated_Protein_Kinase_A_Metabolic_Stress_Sensor_in_the_Heart [accessed Dec 10 2018]
    corecore