12 research outputs found
How Chromatin Is Remodelled during DNA Repair of UV-Induced DNA Damage in Saccharomyces cerevisiae
Global genome nucleotide excision repair removes DNA damage from transcriptionally silent regions of the genome. Relatively little is known about the molecular events that initiate and regulate this process in the context of chromatin. We've shown that, in response to UV radiation–induced DNA damage, increased histone H3 acetylation at lysine 9 and 14 correlates with changes in chromatin structure, and these alterations are associated with efficient global genome nucleotide excision repair in yeast. These changes depend on the presence of the Rad16 protein. Remarkably, constitutive hyperacetylation of histone H3 can suppress the requirement for Rad7 and Rad16, two components of a global genome repair complex, during repair. This reveals the connection between histone H3 acetylation and DNA repair. Here, we investigate how chromatin structure is modified following UV irradiation to facilitate DNA repair in yeast. Using a combination of chromatin immunoprecipitation to measure histone acetylation levels, histone acetylase occupancy in chromatin, MNase digestion, or restriction enzyme endonuclease accessibility assays to analyse chromatin structure, and finally nucleotide excision repair assays to examine DNA repair, we demonstrate that global genome nucleotide excision repair drives UV-induced chromatin remodelling by controlling histone H3 acetylation levels in chromatin. The concerted action of the ATPase and C3HC4 RING domains of Rad16 combine to regulate the occupancy of the histone acetyl transferase Gcn5 on chromatin in response to UV damage. We conclude that the global genome repair complex in yeast regulates UV-induced histone H3 acetylation by controlling the accessibility of the histone acetyl transferase Gcn5 in chromatin. The resultant changes in histone H3 acetylation promote chromatin remodelling necessary for efficient repair of DNA damage. Recent evidence suggests that GCN5 plays a role in NER in human cells. Our work provides important insight into how GG-NER operates in chromatin
Using fMRI Brain Activation to Identify Cognitive States Associated with Perception of Tools and Dwellings
Previous studies have succeeded in identifying the cognitive state corresponding to the perception of a set of depicted categories, such as tools, by analyzing the accompanying pattern of brain activity, measured with fMRI. The current research focused on identifying the cognitive state associated with a 4s viewing of an individual line drawing (1 of 10 familiar objects, 5 tools and 5 dwellings, such as a hammer or a castle). Here we demonstrate the ability to reliably (1) identify which of the 10 drawings a participant was viewing, based on that participant's characteristic whole-brain neural activation patterns, excluding visual areas; (2) identify the category of the object with even higher accuracy, based on that participant's activation; and (3) identify, for the first time, both individual objects and the category of the object the participant was viewing, based only on other participants' activation patterns. The voxels important for category identification were located similarly across participants, and distributed throughout the cortex, focused in ventral temporal perceptual areas but also including more frontal association areas (and somewhat left-lateralized). These findings indicate the presence of stable, distributed, communal, and identifiable neural states corresponding to object concepts
The Stress Response Factors Yap6, Cin5, Phd1, and Skn7 Direct Targeting of the Conserved Co-Repressor Tup1-Ssn6 in S. cerevisiae
Maintaining the proper expression of the transcriptome during development or in response to a changing environment requires a delicate balance between transcriptional regulators with activating and repressing functions. The budding yeast transcriptional co-repressor Tup1-Ssn6 is a model for studying similar repressor complexes in multicellular eukaryotes. Tup1-Ssn6 does not bind DNA directly, but is directed to individual promoters by one or more DNA-binding proteins, referred to as Tup1 recruiters. This functional architecture allows the Tup1-Ssn6 to modulate the expression of genes required for the response to a variety of cellular stresses. To understand the targeting or the Tup1-Ssn6 complex, we determined the genomic distribution of Tup1 and Ssn6 by ChIP-chip. We found that most loci bound by Tup1-Ssn6 could not be explained by co-occupancy with a known recruiting cofactor and that deletion of individual known Tup1 recruiters did not significantly alter the Tup1 binding profile. These observations suggest that new Tup1 recruiting proteins remain to be discovered and that Tup1 recruitment typically depends on multiple recruiting cofactors. To identify new recruiting proteins, we computationally screened for factors with binding patterns similar to the observed Tup1-Ssn6 genomic distribution. Four top candidates, Cin5, Skn7, Phd1, and Yap6, all known to be associated with stress response gene regulation, were experimentally confirmed to physically interact with Tup1 and/or Ssn6. Incorporating these new recruitment cofactors with previously characterized cofactors now explains the majority of Tup1 targeting across the genome, and expands our understanding of the mechanism by which Tup1-Ssn6 is directed to its targets
Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1
Glucose uptake, the first, rate-limiting step of its utilization, is facilitated by glucose transporters. Expression of several glucose transporter (HXT) genes in yeast is repressed by the Rgt1 repressor, which recruits the glucose-responsive transcription factor Mth1 and the general corepressor complex Ssn6-Tup1 in the absence of glucose; however, it is derepressed when Mth1 is inactivated by glucose. Here we show that Ssn6-Tup1 interferes with the DNA-binding ability of Rgt1 in the absence of Mth1 and that the Rgt1 function abrogated by Ssn6 overexpression is restored by co-overexpression of Mth1. Thus Mth1 likely regulates Rgt1 function not by modulating its DNA-binding activity directly but by functionally antagonizing Ssn6-Tup1. Mth1 does so by acting as a scaffold-like protein to recruit Ssn6-Tup1 to Rgt1. Supporting evidence shows that Mth1 blocks the protein kinase A–dependent phosphorylation of Rgt1 that impairs the ability of Rgt1 to interact with Ssn6-Tup1. Of note, Rgt1 can bind DNA in the absence of Ssn6-Tup1 but does not inhibit transcription, suggesting that dissociation of Rgt1 from Ssn6-Tup1, but not from DNA, is necessary and sufficient for the expression of its target genes. Taken together, these findings show that Mth1 is a transcriptional corepressor that facilitates the recruitment of Ssn6-Tup1 by Rgt1
Recommended from our members
Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast
The sulfur assimilation and phospholipid biosynthesis pathways interact metabolically and transcriptionally. Genetic analysis, genome-wide sequencing, and expression microarrays show that regulators of these pathways, Met4p and Opi1p, control cellular methylation capacity that can limit the growth rate
Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans
The pathogenic fungus Candida albicans can undergo phenotypic switching between two heritable states: white and opaque. This phenotypic plasticity facilitates its colonization in distinct host niches. The master regulator WOR1 is exclusively expressed in opaque phase cells. Positive feedback regulation by Wor1 on the WOR1 promoter is essential for opaque formation, however the underlying mechanism of how Wor1 functions is not clear. Here, we use tandem affinity purification coupled with mass spectrometry to identify Wor1-interacting proteins. Tup1 and its associated complex proteins are found as the major factors associated with Wor1. Tup1 occupies the same regions of the WOR1 promoter as Wor1 preferentially in opaque cells. Loss of Tup1 is sufficient to induce the opaque phase, even in the absence of Wor1. This is the first such report of a bypass of Wor1 in opaque formation. These genetic analyses suggest that Tup1 is a key repressor of the opaque state, and Wor1 functions via alleviating Tup1 repression at the WOR1 promoter. Opaque cells convert to white en masse at 37°C. We show that this conversion occurs only in the presence of glycolytic carbon sources. The opaque state is stabilized when cells are cultured on non-glycolytic carbon sources, even in a MTLa/α background. We further show that temperature and carbon source affect opaque stability by altering the levels of Wor1 and Tup1 at the WOR1 promoter. We propose that Wor1 and Tup1 form the core regulatory circuit controlling the opaque transcriptional program. This model provides molecular insights on how C. albicans adapts to different host signals to undergo phenotypic switching for colonization in distinct host niches