12 research outputs found

    Successful control of a neonatal outbreak caused mainly by ST20 multidrug-resistant SHV-5-producing Klebsiella pneumoniae, Greece

    Get PDF
    Background: Extended spectrum beta-lactamase-producing Klebsiella pneumoniae (ESBL-Kp) infection can cause significant morbidity and mortality in neonates. We investigated a nosocomial ESBL-Kp outbreak in a neonatal intensive care unit (NICU) of the University Hospital of Larissa (UHL), Central Greece. Methods: A total of sixty-four ESBL-Kp were studied; twenty six isolates were recovered from the NICU and were compared with thirty-eight randomly selected isolates from different wards of the hospital during the period March-December 2012. All isolates were characterized by antimicrobial susceptibility testing, ESBL-production by double-disk synergy test, molecular typing using BOX-PCR, whereas selected isolates were further characterized by beta lactamase and virulence gene content, multilocus sequence typing and phylogenetic analysis. All neonates affected by ESBL-Kp were put under strict contact isolation, along with appropriate infection control measures. Results: The outbreak strain of ST20 multidrug-resistant SHV-5-producing K. pneumoniae was identified in all infected (n = 13) and three colonized neonates. A novel ST (ST1114) was also identified among SHV-5 producers (n = 10) recovered from nine colonized infants, but it was not related with ST20. Both STs were identified only in the NICU and not in other wards of the hospital. No ESBL-Kp were isolated from the hands of the nursing staff and the environment. Although we were not able to identify the source of the outbreak, no ESBL-Kp were isolated in the NICU after this period and we assumed that the outbreak was successfully controlled. All neonates received parenteral nutrition and most of them were delivered by caesarean section and showed low gestational age (< 32 weeks) and low birth weights (< 1500 g). Conclusion: According to our knowledge, this is the first description of an outbreak of multidrug-resistant SHV-5 producing K. pneumoniae assigned to ST20

    Ciprofloxacin-resistant Escherichia coli in Central Greece: mechanisms of resistance and molecular identification

    Get PDF
    Background: Fluoroquinolone resistant E. coli isolates, that are also resistant to other classes of antibiotics, is a significant challenge to antibiotic treatment and infection control policies. In Central Greece a significant increase of ciprofloxacin-resistant Escherichia coli has occurred during 2011, indicating the need for further analysis. Methods: A total of 106 ciprofloxacin-resistant out of 505 E. coli isolates consecutively collected during an eight months period in a tertiary Greek hospital of Central Greece were studied. Antimicrobial susceptibility patterns and mechanisms of resistance to quinolones were assessed, whereas selected isolates were further characterized by multilocus sequence typing and beta-lactamase content. Results: Sequence analysis of the quinolone-resistance determining region of the gyrA and parC genes has revealed that 63% of the ciprofloxacin-resistant E. coli harbored a distinct amino acid substitution pattern (GyrA:S83L + D87N; ParC:S80I + E84V), while 34% and 3% carried the patterns GyrA: S83L + D87N; ParC: S80I and GyrA: S83L + D87N; ParC: S80I + E84G respectively. The aac (6')-1b-cr plasmid-mediated quinolone resistance determinant was also detected; none of the isolates was found to carry the qnrA, qnrB and qnrS. Genotyping of a subset of 35 selected ciprofloxacin-resistant E. coli by multilocus sequence typing has revealed the presence of nine sequence types; ST131 and ST410 were the most prevalent and were exclusively correlated with hospital and health care associated infections, while strains belonging to STs 393, 361 and 162 were associated with community acquired infections. The GyrA: S83L + D87N; ParC: S80I + E84V substitution pattern was found exclusively among ST131 ciprofloxacin-resistant E. coli. Extended-spectrum beta-lactamase-positive ST131 ciprofloxacin-resistant isolates produced CTX-M-type enzymes; eight the CTX-M-15 and one the CTX-M-3 variant. CTX-M-1 like and KPC-2 enzymes were detected in five and four ST410 ciprofloxacin-resistant E. coli isolates, respectively. Conclusions: Our findings suggest that, ST131 and ST410 predominate in the ciprofloxacin resistant E. coli population

    Saphenous vein grafts in contemporary coronary artery bypass graft surgery

    No full text
    corecore