96 research outputs found

    Shot Noise in Digital Holography

    Get PDF
    We discuss on noise in heterodyne holography in an off-axis configuration. We show that, for a weak signal, the noise is dominated by the shot noise on the reference beam. This noise corresponds to an equivalent noise on the signal beam of one photoelectron per pixel, for the whole sequence of images used to build the digital hologram

    Optimal measurement of visual motion across spatial and temporal scales

    Full text link
    Sensory systems use limited resources to mediate the perception of a great variety of objects and events. Here a normative framework is presented for exploring how the problem of efficient allocation of resources can be solved in visual perception. Starting with a basic property of every measurement, captured by Gabor's uncertainty relation about the location and frequency content of signals, prescriptions are developed for optimal allocation of sensors for reliable perception of visual motion. This study reveals that a large-scale characteristic of human vision (the spatiotemporal contrast sensitivity function) is similar to the optimal prescription, and it suggests that some previously puzzling phenomena of visual sensitivity, adaptation, and perceptual organization have simple principled explanations.Comment: 28 pages, 10 figures, 2 appendices; in press in Favorskaya MN and Jain LC (Eds), Computer Vision in Advanced Control Systems using Conventional and Intelligent Paradigms, Intelligent Systems Reference Library, Springer-Verlag, Berli

    mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression.

    Get PDF
    Schwann cell development is hallmarked by the induction of a lipogenic profile. Here we used amniotic fluid stem (AFS) cells and focused on the mechanisms occurring during early steps of differentiation along the Schwann cell lineage. Therefore, we initiated Schwann cell differentiation in AFS cells and monitored as well as modulated the activity of the mechanistic target of rapamycin (mTOR) pathway, the major regulator of anabolic processes. Our results show that mTOR complex 1 (mTORC1) activity is essential for glial marker expression and expression of Sterol Regulatory Element-Binding Protein (SREBP) target genes. Moreover, SREBP target gene activation by statin treatment promoted lipogenic gene expression, induced mTORC1 activation and stimulated Schwann cell differentiation. To investigate mTORC1 downstream signaling we expressed a mutant S6K1, which subsequently induced the expression of the Schwann cell marker S100b, but did not affect lipogenic gene expression. This suggests that S6K1 dependent and independent pathways downstream of mTORC1 drive AFS cells to early Schwann cell differentiation and lipogenic gene expression. In conclusion our results propose that future strategies for peripheral nervous system regeneration will depend on ways to efficiently induce the mTORC1 pathway

    Demographic and Clinical Features and Prescribing Patterns of Psychotropic Medications in Patients with the Melancholic Subtype of Major Depressive Disorder in China

    Get PDF
    BACKGROUND: Little has been known about the demographic and clinical features of the melancholic subtype of major depressive disorder (MDD) in Chinese patients. This study examined the frequency of melancholia in Chinese MDD patients and explored its demographic and clinical correlates and prescribing patterns of psychotropic drugs. METHODS: A consecutively collected sample of 1,178 patients with MDD were examined in 13 psychiatric hospitals or psychiatric units of general hospitals in China nationwide. The cross-sectional data of patients' demographic and clinical characteristics and prescriptions of psychotropic drugs were recorded using a standardized protocol and data collection procedure. The diagnosis of the melancholic subtype was established using the Mini International Neuropsychiatric Interview (MINI). Medications ascertained included antidepressants, mood stabilizers, antipsychotics and benzodiazepines. RESULTS: Six hundred and twenty nine (53.4%) of the 1,178 patients fulfilled criteria for melancholia. In multiple logistic regression analyses, compared to non-melancholic counterparts, melancholic MDD patients were more likely to be male and receive benzodiazepines, had more frequent suicide ideations and attempts and seasonal depressive episodes, while they were less likely to be employed and receive antidepressants and had less family history of psychiatric disorders and lifetime depressive episodes. CONCLUSIONS: The demographic and clinical features of melancholic MDD in Chinese patients were not entirely consistent with those found in Western populations. Compared to non-melancholic MDD patients, melancholic patients presented with different demographic and clinical features, which have implications for treatment decisions

    Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia.</p> <p>Methods</p> <p>First, we screened a heterogeneous group of TRPV1 agonists and secondly we tested the hypothermic properties of a selected candidate by dose-response studies. Finally we tested the hypothermic properties in a large animal. The screening was in conscious rats, the dose-response experiments in conscious rats and in cynomologus monkeys, and the finally we tested the hypothermic properties in conscious young cattle (calves with a body weight as an adult human). The investigated TRPV1 agonists were administered by continuous intravenous infusion.</p> <p>Results</p> <p>Screening: Dihydrocapsaicin (DHC), a component of chili pepper, displayed a desirable hypothermic profile with regards to the duration, depth and control in conscious rats. Dose-response experiments: In both rats and cynomologus monkeys DHC caused a dose-dependent and immediate decrease in body temperature. Thus in rats, infusion of DHC at doses of 0.125, 0.25, 0.50, and 0.75 mg/kg/h caused a maximal ΔT (°C) as compared to vehicle control of -0.9, -1.5, -2.0, and -4.2 within approximately 1 hour until the 6 hour infusion was stopped. Finally, in calves the intravenous infusion of DHC was able to maintain mild hypothermia with ΔT > -3°C for more than 12 hours.</p> <p>Conclusions</p> <p>Our data support the hypothesis that infusion of dihydrocapsaicin is a candidate for testing as a primary or adjunct method of inducing and maintaining therapeutic hypothermia.</p

    Reversible Disassembly of the Actin Cytoskeleton Improves the Survival Rate and Developmental Competence of Cryopreserved Mouse Oocytes

    Get PDF
    Effective cryopreservation of oocytes is critically needed in many areas of human reproductive medicine and basic science, such as stem cell research. Currently, oocyte cryopreservation has a low success rate. The goal of this study was to understand the mechanisms associated with oocyte cryopreservation through biophysical means using a mouse model. Specifically, we experimentally investigated the biomechanical properties of the ooplasm prior and after cryopreservation as well as the consequences of reversible dismantling of the F-actin network in mouse oocytes prior to freezing. The study was complemented with the evaluation of post-thaw developmental competence of oocytes after in vitro fertilization. Our results show that the freezing-thawing process markedly alters the physiological viscoelastic properties of the actin cytoskeleton. The reversible depolymerization of the F-actin network prior to freezing preserves normal ooplasm viscoelastic properties, results in high post-thaw survival and significantly improves developmental competence. These findings provide new information on the biophysical characteristics of mammalian oocytes, identify a pathophysiological mechanism underlying cryodamage and suggest a novel cryopreservation method

    Statistical Coding and Decoding of Heartbeat Intervals

    Get PDF
    The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems

    Maturation-Dependent Licensing of Naive T Cells for Rapid TNF Production

    Get PDF
    The peripheral naïve T cell pool is comprised of a heterogeneous population of cells at various stages of development, which is a process that begins in the thymus and is completed after a post-thymic maturation phase in the periphery. One hallmark of naïve T cells in secondary lymphoid organs is their unique ability to produce TNF rapidly after activation and prior to acquiring other effector functions. To determine how maturation influences the licensing of naïve T cells to produce TNF, we compared cytokine profiles of CD4+ and CD8+ single positive (SP) thymocytes, recent thymic emigrants (RTEs) and mature-naïve (MN) T cells during TCR activation. SP thymocytes exhibited a poor ability to produce TNF when compared to splenic T cells despite expressing similar TCR levels and possessing comparable activation kinetics (upregulation of CD25 and CD69). Provision of optimal antigen presenting cells from the spleen did not fully enable SP thymocytes to produce TNF, suggesting an intrinsic defect in their ability to produce TNF efficiently. Using a thymocyte adoptive transfer model, we demonstrate that the ability of T cells to produce TNF increases progressively with time in the periphery as a function of their maturation state. RTEs that were identified in NG-BAC transgenic mice by the expression of GFP showed a significantly enhanced ability to express TNF relative to SP thymocytes but not to the extent of fully MN T cells. Together, these findings suggest that TNF expression by naïve T cells is regulated via a gradual licensing process that requires functional maturation in peripheral lymphoid organs

    PP13, Maternal ABO Blood Groups and the Risk Assessment of Pregnancy Complications

    Get PDF
    Placental Protein 13 (PP13), an early biomarker of preeclampsia, is a placenta-specific galectin that binds beta-galactosides, building-blocks of ABO blood-group antigens, possibly affecting its bioavailability in blood.We studied PP13-binding to erythrocytes, maternal blood-group effect on serum PP13 and its performance as a predictor of preeclampsia and intrauterine growth restriction (IUGR). Datasets of maternal serum PP13 in Caucasian (n = 1078) and Hispanic (n = 242) women were analyzed according to blood groups. In vivo, in vitro and in silico PP13-binding to ABO blood-group antigens and erythrocytes were studied by PP13-immunostainings of placental tissue-microarrays, flow-cytometry of erythrocyte-bound PP13, and model-building of PP13--blood-group H antigen complex, respectively. Women with blood group AB had the lowest serum PP13 in the first trimester, while those with blood group B had the highest PP13 throughout pregnancy. In accordance, PP13-binding was the strongest to blood-group AB erythrocytes and weakest to blood-group B erythrocytes. PP13-staining of maternal and fetal erythrocytes was revealed, and a plausible molecular model of PP13 complexed with blood-group H antigen was built. Adjustment of PP13 MoMs to maternal ABO blood group improved the prediction accuracy of first trimester maternal serum PP13 MoMs for preeclampsia and IUGR.ABO blood group can alter PP13-bioavailability in blood, and it may also be a key determinant for other lectins' bioavailability in the circulation. The adjustment of PP13 MoMs to ABO blood group improves the predictive accuracy of this test
    corecore