26 research outputs found

    Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone

    Get PDF
    Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ) at loads corresponding to physiological strain level of 2000 [Formula: see text] . We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized Kelvin–Voigt rheological model to the experimental creep strain response. Strong and significant power law relationships ([Formula: see text] ) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For users’ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV

    Characterisation of time-dependent mechanical behaviour of trabecular bone and its constituents

    Get PDF
    Trabecular bone is a porous composite material which consists of a mineral phase (mainly hydroxyapatite), organic phase (mostly type I collagen) and water assembled into a complex, hierarchical structure. In biomechanical modelling, its mechanical response to loads is generally assumed to be instantaneous, i.e. it is treated as a time-independent material. It is, however, recognised that the response of trabecular bone to loads is time-dependent. Study of this time-dependent behaviour is important in several contexts such as: to understand energy dissipation ability of bone; to understand the age-related non-traumatic fractures; to predict implant loosening due to cyclic loading; to understand progressive vertebral deformity; and for pre-clinical evaluation of total joint replacement. To investigate time-dependent behaviour, bovine trabecular bone samples were subjected to compressive loading, creep, unloading and recovery at multiple load levels (corresponding to apparent strain of 2,000-25,000 με). The results show that: the time-dependent behaviour of trabecular bone comprises of both recoverable and irrecoverable strains; the strain response is nonlinearly related to applied load levels; and the response is associated with bone volume fraction. It was found that bone with low porosity demonstrates elastic stiffening followed by elastic softening, while elastic softening is demonstrated by porous bone at relatively low loads. Linear, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic constitutive models were developed to predict trabecular bone’s time-dependent behaviour. Nonlinear viscoelastic constitutive model was found to predict the recovery behaviour well, while nonlinear viscoelastic-viscoplastic model predicts the full creep-recovery behaviour reasonably well. Depending on the requirements all these models can be used to incorporate time-dependent behaviour in finite element models. To evaluate the contribution of the key constituents of trabecular bone and its microstructure, tests were conducted on demineralised and deproteinised samples. Reversed cyclic loading experiments (tension to compression) were conducted on demineralised trabecular bone samples. It was found that demineralised bone exhibits asymmetric mechanical response - elastic stiffening in tension and softening in compression. This tension to compression transition was found to be smooth. Tensile multiple-load-creep-unload-recovery experiments on demineralised trabecular samples show irrecoverable strain (or residual strain) even at the low stress levels. Demineralised trabecular bone samples demonstrate elastic stiffening with increasing load levels in tension, and their time-dependent behaviour is nonlinear with respect to applied loads . Nonlinear viscoelastic constitutive model was developed which can predict its recovery behaviour well. Experiments on deproteinised samples showed that their modulus and strength are reasonably well related to bone volume fraction. The study considers an application of time-dependent behaviour of trabecular bone. Time-dependent properties are assigned to trabecular bone in a bone-screw system, in which the screw is subjected to cyclic loading. It is found that separation between bone and the screw at the interface can increase with increasing number of cycles which can accentuate loosening. The relative larger deformation occurs when this system to be loaded at the higher loading frequency. The deformation at the bone-screw interface is related to trabecular bone’s bone volume fraction; screws in a more porous bone are at a higher risk of loosening

    Nonlinear viscoelastic characterization of bovine trabecular bone

    Get PDF
    The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness–density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep–recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery’s nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep–recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening–softening behaviour with increasing stress

    The dual burden household and the nutrition transition paradox

    No full text
    OBJECTIVE: The purpose of this study is to document the prevalence of households with underweight and overweight persons (henceforth referred to as dual burden households) and their association with income and urban residence. The explorations by urban residence and income will test whether dual burden households differ from 'underweight only' and 'overweight only' households, respectively. These comparisons are relevant to differentiating or adapting nutrition-related interventions wherever obesity and undernutrition cluster at the household level. POPULATION: Data analysis is based on national surveys conducted in Brazil, China, Indonesia, the Kyrgyz Republic, Russia, Vietnam and the United States. METHODS: All persons were first classified into categories for underweight and overweight, using body mass index (BMI) cutoffs, and then all households were categorized into four types: dual burden, overweight, underweight and normal. Income and urban residence were explored as key risk factors for being a dual burden household, with the effects modeled separately for each country. Multiple logistic regression was used to explore income and urban risk factors, controlling for household size, region of residence and either urban residence or income, as appropriate. RESULTS: In six of the countries studied, 22-66% of households with an underweight person also had an overweight person. Countries with the highest prevalence of dual burden households were those in the middle range of gross national product (GNP). The dual burden household is easily distinguished from the 'underweight only' households in Brazil, China, Indonesia, the United States and Vietnam. In these five countries dual burden households were more likely to be urban and more likely to be among the highest income tertile. There were no significant differences between dual burden and 'underweight only' households in Russia and the Kyrgyz Republic. In contrast, dual burden households were not easily distinguished from the 'overweight only' households in China, Indonesia, the Kyrgyz Republic, the United States and Vietnam. In Brazil and Russia dual burden households were more likely to be lower income and urban than 'overweight only' households. CONCLUSION: The prevalence of dual burden households presents a significant public health concern, particularly for those countries in the middle range of GNP. In some countries (China, Indonesia, the Kyrgyz Republic, the United States and Vietnam), dual burden households share sociodemographic profiles with overweight households, raising concerns for underweight individuals who may inadvertently become the focus of obesity prevention initiatives. For this reason, obesity prevention efforts should focus on messages that are beneficial to the good health of all, such as increasing fruit and vegetable intake, improving overall diet quality and increasing physical activity

    Life in the hydrated suboceanic mantle

    No full text
    International audienceThe recesses of the oceanic crust harbour microbes that influence geochemical fluxes between the solid Earth and the hydrosphere. In the roots of the crust, mantle-derived rocks are progressively hydrated by hydrothermal circulation, a process known as serpentinization. The associated release of molecular hydrogen could provide metabolic energy for microbes. Phylogenetic analyses of chimneys associated with seafloor hydrothermal systems have provided direct but spatially restricted evidence for the existence of active microbial communities in these hydrated rocks; indirect evidence comes from isotopic analyses of drill cores. Here, we examine fully serpentinized peridotites recovered from the Mid-Atlantic Ridge, using Raman microspectroscopy and electron microscopy. We detect high concentrations of organic matter, of two types, intimately associated with serpentine-hosted hydrogarnets. One type contains a complex mixture of aliphatic and aromatic compounds and functional groups such as amides, usually associated with biopolymers such as proteins, lipids and nucleic acids. The other corresponds to dense aggregates of thermally evolved carbonaceous matter, with a weak structural organization, which we attribute to the maturation of carbon compounds present in the other type of organic matter identified. We suggest that the observed endogenic accumulations of organic matter result from past microbial activity within the serpentinized oceanic crust, potentially supported by the by-products of serpentinization. We further suggest that the proposed crustal community mediates elemental fluxes from the Earth's mantle to the oceans
    corecore