72 research outputs found

    MSMC and MSMC2: the multiple sequentially markovian coalescent

    Get PDF
    The Multiple Sequentially Markovian Coalescent (MSMC) is a population genetic method and software for inferring demographic history and population structure through time from genome sequences. Here we describe the main program MSMC and its successor MSMC2. We go through all the necessary steps of processing genomic data from BAM files all the way to generating plots of inferred population size and separation histories. Some background on the methodology itself is provided, as well as bash scripts and python source code to run the necessary programs. The reader is also referred to community resources such as a mailing list and github repositories for further advice

    Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation

    Get PDF
    Evolve and resequence (E&R) is a new approach to investigate the genomic responses to selection during experimental evolution. By using whole genome sequencing of pools of individuals (Pool-Seq), this method can identify selected variants in controlled and replicable experimental settings. Reviewing the current state of the field, we show that E&R can be powerful enough to identify causative genes and possibly even single-nucleotide polymorphisms. We also discuss how the experimental design and the complexity of the trait could result in a large number of false positive candidates. We suggest experimental and analytical strategies to maximize the power of E&R to uncover the genotype–phenotype link and serve as an important research tool for a broad range of evolutionary questions.C Schlötterer, R Kofler, E Versace, R Tobler and SU Fransse

    Comparative evolutionary genetics of deleterious load in sorghum and maize

    Get PDF
    Sorghum and maize share a close evolutionary history that can be explored through comparative genomics1,2. To perform a large-scale comparison of the genomic variation between these two species, we analysed ~13 million variants identi- fied from whole-genome resequencing of 499 sorghum lines together with 25 million variants previously identified in 1,218 maize lines. Deleterious mutations in both species were prev- alent in pericentromeric regions, enriched in non-syntenic genes and present at low allele frequencies. A comparison of deleterious burden between sorghum and maize revealed that sorghum, in contrast to maize, departed from the domestication-cost hypothesis that predicts a higher deleterious burden among domesticates compared with wild lines. Additionally, sorghum and maize population genetic summary statistics were used to predict a gene deleterious index with an accuracy greater than 0.5. This research represents a key step towards understanding the evolutionary dynamics of deleterious variants in sorghum and provides a comparative genomics framework to start prioritizing these variants for removal through genome editing and breeding
    corecore