37 research outputs found
Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations
ABSTRACT Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance
Dominant Tree Species Estimation for Tropical Forest Using Pixel-Based Classification Support Vector Machine (SVM) and Object-Based Classification (OBIA)
Allometric Equations for the Biomass Estimation of <i>Calophyllum inophyllum</i> L. in Java, Indonesia
Reliable data on CO2 quantification is increasingly important to quantify the climate benefits of forest landscape restoration and international commitments, such as the Warsaw REDD+ Framework and Nationally Determined Contributions under the Paris Agreement. Calophyllum inophyllum L. (nyamplung as a local name or tamanu tree for the commercial name) is an increasingly popular tree species in forest landscape restoration and bioenergy production for a variety of reasons. In this paper, we present allometric equations for aboveground biomass (AGB), belowground biomass (BGB), and total above- and belowground biomass (TABGB) predictions of C. inophyllum L. Data collection was carried out twice (2017 and 2021) from 40 trees in Java, Indonesia. Allometric equations using the natural logarithm of diameter at breast height (lnDBH) and ln height (lnH) for biomass prediction qualified the model’s fit with statistical significance at 95% of the confidence interval for AGB, BGB, and TABGB predictions. The results showed that the linear models using both lnDBH and lnH were well fit and accurate. However, the model with lnDBH is more precise than the model using lnH. Using lnDBH as a predictor, the R2 values were 0.923, 0.945, and 0.932, and MAPE were 24.7, 37.0, and 25.8 for AGB, BGB, and TABGB, respectively. Using lnH as a predictor, the R2 values were 0.887, 0.918, and 0.898 and MAPE were 37.4, 49.0, and 39.8 for AGB, BGB, and TABGB, respectively. Consequently, the driven allometric equations can help accurate biomass quantification for carbon-trading schemes of C. inophyllum L
